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Abstract

The transdermal route of drug administration has gained popularity for its convenience and

bypassing the first-pass metabolism. Accurate skin permeability prediction is crucial for suc-

cessful transdermal drug delivery (TDD). In this study, we address this critical need to

enhance TDD. A dataset comprising 441 records for 140 molecules with diverse LogKp val-

ues was characterized. The descriptor calculation yielded 145 relevant descriptors. Machine

learning models, including MLR, RF, XGBoost, CatBoost, LGBM, and ANN, were employed

for regression analysis. Notably, LGBM, XGBoost, and gradient boosting models outper-

formed others, demonstrating superior predictive accuracy. Key descriptors influencing skin

permeability, such as hydrophobicity, hydrogen bond donors, hydrogen bond acceptors,

and topological polar surface area, were identified and visualized. Cluster analysis applied

to the FDA-approved drug dataset (2326 compounds) revealed four distinct clusters with

significant differences in molecular characteristics. Predicted LogKp values for these clus-

ters offered insights into the permeability variations among FDA-approved drugs. Further-

more, an investigation into skin permeability patterns across 83 classes of FDA-approved

drugs based on the ATC code showcased significant differences, providing valuable infor-

mation for drug development strategies. The study underscores the importance of accurate

skin permeability prediction for TDD, emphasizing the superior performance of nonlinear

machine learning models. The identified key descriptors and clusters contribute to a

nuanced understanding of permeability characteristics among FDA-approved drugs. These

findings offer actionable insights for drug design, formulation, and prioritization of molecules

with optimum properties, potentially reducing reliance on costly experimental testing. Future

research directions include offering promising applications in pharmaceutical research and

formulation within the burgeoning field of computer-aided drug design.
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Author summary

Our study delves into the exciting realm of transdermal drug delivery, a growing prefer-

ence for patients due to its convenience. Recognizing the challenge posed by the skin’s

natural barrier to drug permeation, we employed advanced machine learning models to

predict skin permeability solely based on descriptors computationally calculated from the

chemical structure of the molecule. Key descriptors, including partition coefficient,

hydrogen bond donors, hydrogen bond acceptors, and topological polar surface area,

emerged as influential factors in skin permeability prediction. Hydrophobicity, polarity,

and adherence to Lipinski rules were identified as crucial considerations. Analyzing FDA-

approved drugs and their predicted permeability revealed distinct clusters with varied per-

meability characteristics, shedding light on the potential applications of different com-

pounds in transdermal drug delivery. Our research provides valuable tools for early-stage

drug discovery, facilitating the selection of compounds with optimal skin permeability.

While acknowledging certain limitations, particularly in representing high molecular

weight drugs, our models offer a promising avenue for efficient drug design and formula-

tion. By making these findings accessible, we aim to contribute to the broader understand-

ing of transdermal drug delivery and inspire further research in this dynamic field.

Introduction

Recently, there has been increasing interest in utilizing the skin as a convenient route for drug

administration, both for local and systemic therapeutic effects [1,2]. However, several chal-

lenges are present for the effective delivery of drugs through the skin, which forms a natural

barrier for the permeation of xenobiotics, and the development of complicated pharmaceutical

technology (i.e., transdermal drug delivery, which is of interest) is even more challenging [3].

The most notable one of them is that the drug must have suitable physicochemical properties

to enable it to penetrate the stratum corneum and reach the bloodstream with a sufficient dose

[4]. Currently, formulation scientists rely on empirical rules to select drugs for transdermal

drug delivery (TDD), but many drugs deviate from these rules and exhibit varied behavior

[5,6]. Moreover, these rules provide a qualitative estimation of permeability, and it is generally

difficult to compare drugs that obey these rules. Therefore, with the accumulated data on the

permeability of drugs, it is essential to develop appropriate models that provide accurate quan-

titative predictions for the skin permeability of drugs [7].

In silico QSPR (Quantitative Structure-Property Relationship) models, which correlate

numerical descriptors of molecular structure with specific properties, have been extensively

used to predict skin permeability [8]. Multiple linear regression (MLR) and principal compo-

nent analysis (PCA) models have traditionally been employed in QSPR studies of skin perme-

ability [9,10]. However, due to the complex and diverse nature of the chemicals involved,

nonlinear regression methods such as support vector machine (SVM), random forest (RF),

and artificial neural networks (ANN) have gained popularity over linear methods. These non-

linear methods are more effective at identifying patterns and capturing nonlinear relationships

within complex datasets [7,8].

Artificial intelligence (AI) is a rapidly evolving field that aims to design and build machines

capable of performing tasks requiring human intelligence, such as problem-solving, learning,

and decision-making. AI has immense potential to improve various domains, including

healthcare and drug development [11]. In the context of drug delivery, AI can be utilized to

develop models for predicting drug permeability and bioavailability based on their
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physicochemical properties. This has the potential to accelerate the drug development process

and identify promising drug candidates that may have been overlooked [12]. Several AI mod-

els have been developed to estimate skin permeability using basic physicochemical characteris-

tics [7,13–18]. Most of these models rely on calculated descriptors for model training in order

to determine the permeability coefficient (kp). More sophisticated models, such as ANN, have

started to be commonly employed for modeling and predicting the properties and behavior of

molecules by simulating the learning and generalization behavior of the human brain for com-

plex multidimensional problems [19].

The objective of this study is to develop a regression model utilizing various AI algorithms,

including nonlinear models, for predicting LogKp of new compounds based solely on their

molecular structure. The proposed model will be utilized for the prediction of LogKp values

for FDA-approved drugs. Subsequently, cluster analysis will be employed to categorize these

drugs into distinct classes based on their descriptors in order to elucidate their permeability

patterns across a diverse range of molecular structures. Additionally, an investigation of the

drug permeability patterns will be conducted through their classification according to the Ana-

tomical Therapeutic Chemical (ATC) code.

Methods

Study design

This research aims to develop a predictive model utilizing AI algorithms to predict skin perme-

ability and classify FDA-approved drugs based on their physicochemical properties and skin

permeability patterns. Fig 1 provides a visual representation of the systematic study design

workflow, leveraging computational approaches and machine learning techniques. The

selected dataset served as the basis for both training and evaluating the regression predictive

models. It underwent partitioning into an 85% training set and a 15% test set. Subsequently,

the models were trained and evaluated, followed by the selection of the best-performing model

for subsequent analysis. In the exploration of the permeability patterns of FDA-approved

drugs, a DrugBank dataset was used, the descriptors were calculated, a prediction of skin per-

meability was made, and lastly, a clustering process was conducted.

The rationale behind this descriptor-based clustering lies in its potential applications in

facilitating the selection of drug candidates for transdermal formulation, aligning with indus-

try standards such as the Biopharmaceutical Classification System (BCS), which categorizes

drugs based on their water solubility and intestinal permeability into four categories (I to IV)

[20]. The classification of drugs into distinct classes enables a systematic understanding of

drug behavior. Furthermore, FDA-approved drugs were grouped according to the first two

levels of the ATC code, which categorize them based on their therapeutic uses and pharmaco-

logical classes, and a comparative analysis of permeability was conducted across them. This

demonstrates how different pharmacologic and therapeutic groups have different distributions

of skin permeability.

The study involved the analysis of publicly available data, and ethical considerations pri-

marily revolved around ensuring the responsible and accurate use of the data. No human or

animal subjects were involved in the study. The code used for analysis is available in the

GitHub public repository (https://github.com/AhmadHammad21/Skin-Permeation).

Skin pereambility dataset

In this study, a skin permeability dataset was acquired from the work of Cheruvu et al. [21].

The dataset encompasses in vitro human skin permeation parameters, including LogKp values,

for a diverse range of molecules, including drugs, xenobiotics, and other chemical compounds.
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It provides essential information on physicochemical properties, experimental conditions, and

solute behavior on human epidermal membranes. The stringent inclusion criteria applied in

the assembly of the dataset, which encompassed considerations such as limiting the mem-

branes to human epidermal and isolated stratum corneum, exclusive inclusion of reports

involving undamaged skin and corresponding skin integrity tests, incorporation solely of data

derived from aqueous solutions and buffers as a vehicle, and the selection of unionized solutes

with a fraction unionized (fui) exceeding 0.9, served as a valuable and updated resource to uti-

lize in developing a robust skin permeability prediction model. In order to maintain a homo-

geneous dataset, water and permanently ionized molecules were excluded. We then retrieved

the SMILES structures of the compounds from PubChem for generating descriptors in subse-

quent analyses.

Fig 1. Workflow of Predictive Model Development and FDA-Approved Drug Classification.

https://doi.org/10.1371/journal.pdig.0000483.g001
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Calculation of molecular descriptors

To generate descriptors for the molecules, we utilized the open-source, Java-based chemoin-

formatics library Chemistry Development Kit (CDK) version 2.8 [22]. The SMILES structure

of the molecules was imported into the library, and a comprehensive set of one-dimensional

and two-dimensional representations of molecular structures (1D/2D) descriptors were calcu-

lated for subsequent use as inputs in the AI models. These descriptors take into account the

1D molecular chemical formula and the 2D spatial and topological information of the struc-

ture when calculating the descriptor value. Prior to the descriptor calculation, salts were neu-

tralized. To handle missing data, we filled the columns containing errors with the mean or

median value of the respective column.

AI models

Two types of experiments were conducted, namely regression and cluster analysis. The experi-

ments were carried out using Scikit-Learn version 1.2 [23], which is an open-source library uti-

lizing the Python programming language. The process involved various stages, including data

cleaning, preprocessing, and splitting into training and testing sets. To ensure fair and effective

model training, the molecular descriptors were subjected to a standardization process. Regard-

ing regression models, the dataset was split into an 85% training set and a 15% testing set. Sub-

sequently, the model with optimal performance was selected for further analysis.

Regression models

To predict the LogKp values, we constructed a diverse set of models using the Scikit-Learn

library. These models encompassed various algorithms, including MLR and ensemble

methods such as bagging and boosting. These methods leverage the capabilities of multiple

machine learning models by integrating their predictions, thereby surpassing the perfor-

mance of individual models [24]. Two prominent techniques are employed for model com-

binations. Bagging is where models are independently trained and their outputs are

combined at the end. Conversely, boosting occurs when each successive model learns from

the predictive shortcomings of the previous model. The MLR model served as the baseline

approach, leveraging the relationship between the input descriptors and LogKp values for

predictions.

Ensemble algorithms such as RF, XGBoost, CatBoost, and LGBM were employed. Addi-

tionally, we utilized ANNs, an advanced machine learning model, to capture complex relation-

ships within the descriptors and enhance the predictive performance of the models. The

models were trained using a comprehensive dataset of molecule descriptors, enabling them to

learn the underlying patterns and relationships that govern permeability behavior.

Model evaluation and validation

To evaluate the performance and accuracy of the developed models, we employed several eval-

uation metrics to compare the predicted LogKp values with the actual values in the test set.

These metrics included R-Squared (R2)(1), Root Mean Square Error (RMSE)(2), and Mean

Absolute Error (MAE)(3). R2 serves as an indicator of the degree to which the regression model

aligns with the actual values. RMSE quantifies the root average of the squared difference

between the predicted and actual LogKp values, while MAE provides a measure of the average

absolute difference. The model performance on the training set was evaluated using a 5-fold
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Cluster analysis

For investigating the permeability of approved drugs, we obtained a dataset of FDA-approved

drugs from DrugBank, which is a comprehensive online database that provides information

on drugs, drug targets, and drug interactions [25]. Preprocessing steps were applied to ensure

data integrity, including the removal of salts, the exclusion of inorganic drugs, and drugs with

multiple bioactive compounds. We predicted the permeability of these approved drugs at 37˚C

and conducted cluster analysis using K-means clustering, an unsupervised learning approach,

and a data mining technique that identifies similarities between data points. The number of

clusters was chosen based on the results of the elbow method. Furthermore, we utilized the

ATC code for each drug to classify them based on the first two levels of the code. The ATC

code is a widely used classification system that categorizes drugs based on their therapeutic

properties and anatomical targets [26]. It provides a hierarchical structure with five levels,

where the first level represents the main anatomical group and the second level represents the

therapeutic subgroup. Groups with less than three drugs were excluded from the statistical

analysis.

Statistical analysis

Statistical analysis was performed using PSPP 2.0.0 (GNU Project). Group comparisons were

conducted using the Kruskal-Wallis test, and pairwise comparisons were conducted using the

Mann-Whitney U test. A significance threshold of p< 0.05 was applied to determine signifi-

cant differences between groups.

Results

Characterization of the dataset

The acquired dataset consists of 441 records for 140 different molecules with a diverse range of

LogKp values. The values ranged from -5.53 cm/h to -0.08 cm/h and were measured under

varying temperatures, ranging from 295 K to 312 K. Fig 2 provides a comprehensive character-

ization of the dataset, including the distribution of LogKp values, molecular weight, octanol

water partition coefficient (LogP), water solubility, and melting point. Specifically, the figure

illustrates (a) the distribution of LogKp values, while (b), (c), (d), and (e) exhibit the distribu-

tion of molecular weight, LogP, water solubility, and melting point, respectively. This figure

offers insights into the dataset’s variability and suitability for further analysis and regression

model development.
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Descriptors calculation

A total of 222 (1D/2D) descriptors were computed for the compounds present in the dataset.

Descriptors with zero values and highly correlated descriptors with absolute correlation factor

of 0.95 and higher were excluded from further analysis, ending with 145 descriptors. Fig 3

shows a heatmap depicting the correlations between different molecular descriptors. As

expected, there is a strong negative correlation between LogKp values and descriptors such as

polar surface area, number of hydrogen bond donors, and number of hydrogen bond accep-

tors. On the other hand, LogKp shows a strong positive correlation with LogP descriptors, indi-

cating that the permeability of molecules through the skin is significantly influenced by their

hydrophobic nature. The number of Lipinski empirical rule failures also shows a negative cor-

relation with LogKp, suggesting that the Lipinski rules can be extended to predict skin perme-

ability. Notably, carbohydrates exhibit the highest number of Lipinski rule failures with very

low LogKp values (-4.53 ± 0.62 cm/h). Fig 4 illustrates the correlation of a subset of highly cor-

related descriptors with LogKp.

Regression models development

Various machine learning models, including MLR, RF, XGBoost, CatBoost, LGBM, and ANN,

were employed for regression analysis. Table 1 presents the performance of these models

based on metrics such as RMSE, MAE, and R2 score.

Based on the reported metrics, the LGBM, XGBoost, and Gradient Boosting models outper-

formed the other models in terms of MAE, RMSE, and R2. Among these models, LGBM exhib-

ited the lowest RMSE along with the highest R2 value, indicating its superior performance and

ability to accurately predict LogKp values, while gradient boosting showed the lowest MAE.

The ANN model also demonstrated a performance slightly lower than most of the ensemble

boosting models. Conversely, the MLR model exhibited the lowest performance when utilizing

all descriptors. Since MLR typically achieves better results with a smaller number of

Fig 2. Comprehensive Characterization of the Dataset for 140 Molecules. The distribution of the molecules according to: (A) LogKp. The distribution of

LogKp values is depicted alongside with (B) molecular weight, (C) LogP, (D) Log aqueous solubility, (E) melting point.

https://doi.org/10.1371/journal.pdig.0000483.g002
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descriptors, we applied forward feature selection to identify the most relevant 10 descriptors

and reconstructed the model. However, even with this reduced set of descriptors, MLR still

yielded the highest MAE, RMSE, and the lowest R2 value among the models assessed. Fig 5

shows the predicted compared to actual values of LogKp along with the top important features

for the best three machine learning models, namely LGBM, gradient boosting, and XGBoost.

Fig 3. Correlation Heatmap of Different Molecular Descriptors for Skin Permeability.

https://doi.org/10.1371/journal.pdig.0000483.g003
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Polarity descriptors were among the most important features in predicting LogKp values. For

further analysis, the LGBM model was used for predicting LogKp.

Cluster analysis

The DrugBank dataset of FDA-approved drugs (2326 compounds) underwent descriptor cal-

culation followed by PCA to extract two principal components, which collectively accounted

for 43% of the total variance in the dataset. In Fig 6, the overlay of the skin permeability dataset

onto the DrugBank dataset was achieved by applying the same PCA algorithm used for the

DrugBank dataset, highlighting areas of high density and variability in covering the diverse

FDA-approved drug compounds. A cluster analysis was conducted using the K-means algo-

rithm, resulting in four distinct clusters shown in Fig 7. While the clusters did not exhibit a

Fig 4. Correlation Analysis of Key Molecular Descriptors Influencing Skin Permeability (LogKp). This figure highlights the relationship between LogKp

and specific descriptors crucial for skin permeability. Panels (A) through (F) showcase highly correlated descriptors: (A) number of hydrogen bond acceptors,

(B) number of hydrogen bond doners, (C) calculated LogP (XLogP), (D) number of aromatic CH carbons, (E) number of Lipinski rule failures, and (F)

topological polar surface area.

https://doi.org/10.1371/journal.pdig.0000483.g004

Table 1. Performance of various machine learning models.

Model R2 RMSE MAE Cross Validation MAE

MLR (10 features) 0.338 0.814 0.624 0.599

Decision Tree 0.729 0.535 0.323 0.473

RF 0.788 0.473 0.314 0.444

XGBoost 0.798 0.462 0.281 0.446

Gradient Boosting 0.818 0.439 0.276 0.441

CatBoost 0.797 0.464 0.300 0.436

LGBM 0.819 0.437 0.278 0.445

ANN 0.797 0.462 0.298 0.412

https://doi.org/10.1371/journal.pdig.0000483.t001
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clear demarcation, these clusters exhibited significantly different properties, as depicted in

Fig 8. Descriptive statistics for these properties are provided in S1 Table. Among the identified

clusters, a Kruskal-Wallis test for molecular weight showed that there was a statistically signifi-

cant difference between groups (p< 0.0001). Class 2 exhibited the highest average molecular

Fig 5. The Predicted versus Actual Plot of the Best Three Machine Learning Models for Predicting LogKp Along with Their Top-Performing Features.

https://doi.org/10.1371/journal.pdig.0000483.g005

Fig 6. Overlay of Skin Permeability Dataset onto DrugBank FDA-Approved Drugs Using PCA. The overlay

visualizes the distribution of skin permeability dataset across the FDA-approved drug compounds from the DrugBank

dataset.

https://doi.org/10.1371/journal.pdig.0000483.g006
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weight (1529.25 ± 605.62 Daltons). This class predominantly comprises polypeptides. Following

Class 2, Class 0 had an average molecular weight of 540.98 ± 193.56 Daltons, while Class 1 had an

average molecular weight of 423.85 ± 116.12 Daltons. On the other hand, Class 3 encompassed

very small molecules with an average molecular weight of 231.17 ± 78.60 Daltons. Furthermore,

an analysis of the number of hydrogen bond donors and acceptors revealed that Class 2 had statis-

tically significant higher values in this regard compared to the others (p< 0.0001). This observa-

tion aligns with the fact that Class 2 primarily consisted of polypeptides, which tend to exhibit a

higher number of hydrogen bonding sites. Additionally, Class 2 compounds exhibited the highest

topological polar surface area (p< 0.0001), indicating their pronounced polarity.

The analysis also revealed additional insights into their chemical composition. Specifically,

Class 0 was found to have a higher proportion of saturated carbons compared to Class 1

(p< 0.0001), which exhibited a greater number of aromatic atoms (p< 0.0001). This disparity

in carbon saturation suggests a variation in the structural characteristics of the compounds

between these two classes. Moreover, Class 0 displayed a higher occurrence of Lipinski rule

violations compared to Class 1 (p< 0.0001). This observation can be attributed to the relatively

higher molecular weight and number of hydrogen bond donors and/ or acceptors present in

Class 0 compounds. Furthermore, Class 2 compounds predominantly exhibited four Lipinski

failures. In contrast, Class 3 compounds had predominantly zero Lipinski failures.

The LogKp values of FDA-approved drugs were predicted using the LGBM model, and the

corresponding results are presented in Fig 9. Among the clusters, Cluster 1 exhibited the high-

est predicted permeability (p< 0.0001), whereas Cluster 2 displayed the lowest permeability

(p< 0.0001). Cluster 3 exhibited a wide range of permeability values.

ATC groups permeability patterns

A total of 2456 FDA-approved drugs were categorized into 83 classes based on the first two lev-

els of the ATC code (Fig 10). The analysis revealed significant differences in the predicted

Fig 7. Cluster Analysis of FDA-Approved Drugs from the DrugBank Dataset.

https://doi.org/10.1371/journal.pdig.0000483.g007
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LogKp values among the different classes (p< 0.0001). Subsequent pairwise comparisons

within the groups identified 1517 pairs with statistically significant differences (p< 0.05) out

of a total of 3403 pairs examined, as shown in Fig 11. The statistical test was used to validate

the different distributions of predicted permeability between groups. Notably, distinct LogKp

distributions were observed for certain groups. For instance, anesthetics (N01) which are com-

posed of general anesthetics that are known to be highly lipophilic and readily pass the blood-

brain barrier, and local anesthetics, which act by permeating skin layers. They exhibited signif-

icantly higher predicted LogKp values than most of the other nervous system drug groups,

including analgesics (N02) (p = 0.003), antiepileptics (N03) (p< 0.0001), psycholeptics (N05)

(p = 0.005), and other nervous system drugs (N07) (p< 0.0001). Antihistamines for systemic

use (R06) displayed significantly higher predicted LogKp values (-2.09 ± 0.42 cm/h) compared

to drugs for functional gastrointestinal disorders (A03) (p< 0.0001), which predominantly

Fig 8. Descriptive Analysis of Clustered FDA-Approved Drugs from the DrugBank Dataset. Box plots display selected molecular descriptors for the

identified clusters, illustrating distinct properties among the clusters. (A) molecular weight, p< 0.0001 between all, (B) number of hydrogen bond doners,

p< 0.0001, except between 1 and 3, p = 0.094, (C) number of hydrogen bond acceptors, p< 0.0001, (D) topological polar surface area, p< 0.0001 (E) number

of Lipinski failures, p< 0.0001, (F) hybridization ratio (ratio of Sp3 carbons to the total of Sp3+Sp2 carbons), p< 0.0001, except between 2 and 3, p = 0.027, (G)

number of aromatic carbons, p< 0.0001, (H) number of aromatic atoms, p< 0.0001, and (I) total absolute sum of polarizability difference between bonded

atoms, p< 0.0001.

https://doi.org/10.1371/journal.pdig.0000483.g008
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consisted of anticholinergic drugs. Furthermore, drugs for functional gastrointestinal disor-

ders (A03), antiemetics (A04), and antiobesity drugs (A08) exhibited significantly higher pre-

dicted LogKp values (-2.48 ± 0.51, -2.42 ± 0.60, and -2.17 ± 0.67 cm/h, respectively) compared

to most other members of the alimentary tract and metabolism group (A). Within the cardio-

vascular system group, calcium channel blockers (C08) displayed significantly higher LogKp

values compared to beta blockers (C07) (p< 0.0001), while agents acting on the renin-angio-

tensin system (C09), including ACE inhibitors and ARBs, exhibited significantly higher LogKp

values than beta blockers (p = 0.004) but lower values than calcium channel blockers

(p = 0.021).

Discussion

In recent years, the transdermal route of drug administration has gained prominence as a con-

venient option for patients [4]. However, the skin presents a natural barrier that hinders the

permeation of chemicals into the bloodstream. The ability of a drug to effectively penetrate the

Fig 9. Predicted LogKp Values for FDA-Approved Drug Clusters. Notably, pairwise comparisons indicated

statistical significance between all clusters (p< 0.0001), except for the comparison between Cluster 0 and Cluster 3

(p = 0.029).

https://doi.org/10.1371/journal.pdig.0000483.g009

Fig 10. Box Plot of the Predicted LogKp for FDA-Approved Drugs Categorized into 83 Classes Based on the First Two Levels of the ATC Code.

https://doi.org/10.1371/journal.pdig.0000483.g010
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skin and reach the systemic circulation depends on its physicochemical properties. Therefore,

the development of predictive models is crucial to identifying and screening potential drug

candidates with higher bioavailability via the transdermal route. These models can assist in the

selection of drugs that possess the necessary physicochemical characteristics for successful

transdermal drug delivery. Previous QSPR studies have primarily focused on developing linear

models using MLR and PCA [10]. These linear models offer a straightforward and easily inter-

pretable approach for predicting skin permeability. However, it is important to note that linear

Fig 11. Statistical Comparison Heatmap for Predicted LogKp Values Among ATC Drug Groups. The Mann-Whitney U test was employed for statistical

validation, investigating distinct distributions of predicted permeability between groups. No control for multiple testing was applied due to the exploratory

nature of the analysis, presenting these findings as hypotheses for further investigation.

https://doi.org/10.1371/journal.pdig.0000483.g011
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models may oversimplify the relationship between physicochemical variables and compound

descriptors when compared to non-linear models [15,27]. Our findings indicate that the per-

formance of the MLR model was the poorest among the models evaluated in this study (R2 =

0.338, RMSE = 0.814, MAE = 0.624). In contrast, the performance of nonlinear machine learn-

ing models, particularly most of the boosting models such as LGBM, XGBoost, and Gradient

Boosting, demonstrated superiority in predicting LogKp. Most boosting methods revealed

higher performance over bagging models and ANNs. Moreover, ANN exhibited better perfor-

mance than bagging models. These results are consistent with previous research findings [27].

The relationship between descriptors and skin permeability has been extensively studied in

previous research [28,29]. In our investigation, we identified four descriptors, namely XLogP,

number of hydrogen bond doners (nHBDon), number of hydrogen bond acceptors (nHBAcc),

and topological polar surface area (TopoPSA), which exhibited a strong correlation with

LogKp. Additionally, our analysis revealed that these descriptors ranked among the top fea-

tures in the best-performing models, underscoring their relevance and contribution to accu-

rate predictions of skin permeability. XLogP is a calculation method for LogP and represents a

measure of molecular hydrophobicity [30]. LogP has been widely recognized for its significant

association with skin permeability [29]. This observation is consistent with the understanding

that hydrophobic molecules have an increased ability to traverse the hydrophobic barrier of

the skin. Furthermore, we observed a highly negative correlation between LogKp and the

TopoPSA descriptor, which further emphasizes the role of molecule polarity in skin perme-

ation. The number of hydrogen bond donors and acceptors in a molecule plays a significant

role in its interaction with water molecules [31]. These functional groups can form strong

hydrogen bonds with water, which require a considerable amount of energy to break. This

interaction with water molecules can hinder the penetration of the molecule through the

hydrophobic lipid layers of the skin. Interestingly, we also observed a negative correlation

between the number of Lipinski failures and LogKp. Lipinski rules, originally developed to pre-

dict the oral bioavailability of drugs, are based on factors such as molecular weight, lipophili-

city, the number of hydrogen bond donors, and the number of hydrogen bond acceptors [32].

The correlation between the number of Lipinski failures and skin permeability suggests the

potential extension of these rules for predicting skin permeability [6].

FDA-approved drugs serve as a valuable resource for seeking suitable candidates for trans-

dermal drug delivery systems. Despite the molecular diversity observed among these drugs,

our analysis revealed their classification into four distinct clusters based on their descriptor

properties. Cluster 0, comprising 301 drugs, exhibited high molecular weights, saturation, and

polarity. Cluster 1, consisting of 980 drugs, exhibited lower molecular weights, high unsatura-

tion, and aromaticity. Cluster 2, encompassing 61 drugs, mainly consisted of high molecular

weight compounds, particularly polypeptides. Finally, Cluster 3 included 951 drugs with very

low molecular weights. These clusters exhibited significant variation in their predicted LogKp

values, indicative of their distinct permeability characteristics. Notably, Cluster 1 exhibited sig-

nificantly higher predicted LogKp values compared to the other clusters (p< 0.0001). This

may be attributed to the high degree of unsaturation and aromaticity within this group, cou-

pled with its lower molecular weight. Conversely, Cluster 2 displayed significantly lower pre-

dicted LogKp values compared to all other clusters (p< 0.0001). Although this cluster was not

represented in the training dataset, it aligns with the general understanding that very high

molecular weight compounds tend to have poor permeability. Additionally, the high number

of hydrogen bond doners/acceptors contributes significantly to the poor bioavailability of

drugs as it favors the interaction with water instead of membrane lipids [31]. Cluster 3 exhib-

ited a wide range of predicted LogKp values, reflecting the diverse nature of compounds within

this cluster. The observed variability can be attributed to the broad spectrum of compounds
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classified under Cluster 3, each possessing unique physicochemical properties that impact

their permeability.

ATC is an annotation system introduced by the World Health Organization that gives all

drugs a code that classifies them based on five levels [26]. The first level represents the anatom-

ical and pharmacologic group of the drug, where drugs are classified into one of the 14 groups.

The second level represents the therapeutic and pharmacologic groups of the drug. This anno-

tation system is used here to investigate the skin permeability patterns across the different

pharmacologic and therapeutic groups of FDA-approved drugs. Several groups showed signifi-

cant differences in predicted LogKp values. For instance, anesthetics (N01) consist of general

and local anesthetics. General anesthetics are characterized by high lipophilicity [33], enabling

their rapid passage across the blood-brain barrier. Our findings suggest that the high skin per-

meability predicted for these compounds highlights their potential applicability in transdermal

drug delivery. Substantiating our predictions, studies support our finding regarding fentanyl

as a highly permeable drug with several transdermal patches on the market [34,35]. On the

other hand, local anesthetics are relatively hydrophobic drugs that must permeate through the

skin to act on dermis nerve terminals [36]. Hypertension is a chronic disease with an interest

in increasing patient compliance using TDD [37]. Our results reveal higher predicted LogKp

for calcium channel blockers compared to beta blockers. Also, up to our knowledge, there

were no studies that compared the permeability of antihypertensives from different pharmaco-

logic groups. Our results are in agreement with previous comparisons with drugs from the

same pharmacologic group, even though calcium channel blockers have no representation in

our training dataset [38,39]. Our analysis provides a broad comparison of drug groups in

terms of their permeability patterns. However, for a more detailed understanding of the per-

meability characteristics within individual pharmacological groups, the data are provided in

S1 Data. This supplemental information allows interested readers to delve deeper into the spe-

cific permeability trends and explore the individual variations among different pharmacologi-

cal categories.

The successful development of regression models for skin permeability prediction opens

avenues for efficient drug design and discovery. The accurate prediction of LogKp can aid in

identifying molecules with optimal permeability characteristics, potentially reducing the need

for time-consuming and costly experimental testing. The developed models have the potential

to be valuable tools in early-stage drug discovery, development, and formulation processes.

They can aid in the selection and optimization of compounds with desirable skin permeability

properties, thereby facilitating the development of more effective and efficient drug candidates.

The insights gained from the correlation analysis between descriptors and skin permeability

can further inform the design and optimization of compounds with specific permeability pro-

files. Clustering analysis of FDA-approved drugs offers guidance in selecting and optimizing

candidates for TDD and provides a unique perspective on skin permeability patterns across

therapeutic groups. The study extends from earlier research and holds significant implications

for drug development decisions, offering actionable insights for tailoring molecules, prioritiz-

ing candidates, and developing targeted and patient-friendly drug delivery systems [40,41].

Furthermore, guided by the principles of the 3Rs (replacement, reduction, and refinement) in

animal research, there exists an ethical commitment to diminish the reliance on humans and

animals in studies and to explore alternative methodologies, including in vitro and in silico
models, for compound testing [42]. However, the ethical impact on industry and the need for

guidelines to validate the predictions of these models, ensure transparency and interpretability,

and prevent misuse of them highlight the importance of a balanced and accountable approach

to harnessing the benefits of AI in drug development [43,44]. International organizations such

as the OECD have developed guidance and recommendations for validating QSAR modeling,
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facilitating the regulatory acceptance and adoption of in silico-generated data, and ultimately

aiming at minimizing the necessity for animals in toxicity studies [45]. Additionally, employ-

ing in silico QSAR modeling on data derived from human skin not only proves to be a cost-

effective substitute for using animal skin but also yields predictions with enhanced accuracy in

predicting human skin permeability.

The training set used in this study encompassed a broad range of molecules with diverse

properties. However, it is important to acknowledge that the representation of high molecular

weight drugs, such as proteins, was limited in the training set. Proteins, due to their unique

characteristics and larger molecular sizes, may exhibit distinct behaviors and permeability pat-

terns compared to small molecule drugs. In addition, it is important to acknowledge that not

all drugs in the DrugBank database have assigned ATC codes, and some drugs, particularly

proteins, may lack a defined SMILES structure. Consequently, the analysis based on ATC

codes should be interpreted cautiously, considering the potential limitations and incomplete

representation of certain drug classes, particularly proteins. Finally, no control for multiple

testing was implemented, given the exploratory nature of this analysis, although we used

group comparison using the Kruskal-Wallis test before each time multiple testing was con-

ducted to validate the significance of the difference.

Future research should focus on integrating multi-omics data for a holistic understanding

of skin permeability, the anatomical location of the skin, the impact of permeation enhancers,

and the development of mechanistic models considering different mechanisms of drug perme-

ability. Validation across diverse populations, exploration of novel descriptors, and improving

machine learning model explainability are essential. Using cutting-edge models that are

known to give outstanding performance without using descriptors can increase predictive

accuracy and overcome the limited representation of the molecule [46]. However, the practical

implementation of such models may pose challenges, requiring substantial computing

resources, which may be limited. Economic impact studies are needed to evaluate the cost-

effectiveness of AI-driven drug development.

Conclusion

In conclusion, our study highlights the effectiveness of AI algorithms in predicting skin perme-

ability for molecules. The boosting models, particularly LGBM, demonstrated superior perfor-

mance in LogKp prediction compared to other models, providing robust quantitative

estimations. The comprehensive set of molecular descriptors and the optimization of model

parameters contributed to the accuracy of the predictions with certain descriptors describing

molecule polarity being highly correlated with the permeability. Furthermore, the cluster anal-

ysis of FDA-approved drugs uncovers distinct permeability profiles within different drug clas-

ses by revealing four clusters with distinct properties, facilitating the identification of potential

drug candidates for TDD. Further classification by ATC code reveals drugs with promising

TDD candidates within specific therapeutic categories. By integrating AI-based predictions of

skin permeability, this research offers valuable insights and potential applications in early-

stage drug discovery, formulation, and optimization, paving the way for efficient and targeted

TDD systems with enhanced therapeutic efficacy.

Supporting information

S1 Table. Descriptive Statistics of Selected Molecular Descriptors for Identified Clusters.

Note that the table presents the average ± standard deviation of key molecular descriptors

characterizing each cluster derived from the DrugBank dataset of FDA-approved drugs.
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code and cluster.
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