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Abstract

When detected at an early stage, the 5-year survival rate for people with invasive cervical

cancer is 92%. Being aware of signs and symptoms of cervical cancer and early detection

greatly improve the chances of successful treatment. We have developed an Artificial Intelli-

gence (AI) algorithm, trained and evaluated on cervical biopsies for automated reporting of

digital diagnostics. The aim is to increase overall efficiency of pathological diagnosis and to

have the performance tuned to high sensitivity for malignant cases. Having a tool for triage/

identifying cancer and high grade lesions may potentially reduce reporting time by identify-

ing areas of interest in a slide for the pathologist and therefore improving efficiency. We

trained and validated our algorithm on 1738 cervical WSIs with one WSI per patient. On the

independent test set of 811 WSIs, we achieved 93.4% malignant sensitivity for classifying

slides. Recognising a WSI, with our algorithm, takes approximately 1.5 minutes on the NVI-

DIA Tesla V100 GPU. Whole slide images of different formats (TIFF, iSyntax, and CZI) can

be processed using this code, and it is easily extendable to other formats.

Author summary

The majority of biopsies received by pathologists for reporting, do not contain invasive

cancer. This yields opportunities for Artificial Intelligence (AI) development in identify-

ing cancerous and high grade lesions in a slide and reduce the necessity of pathologist hav-

ing to review the whole slide and negative biopsies. We have developed an Artificial

Intelligence (AI) algorithm, trained and evaluated on cervical biopsies for automated

reporting of digital diagnostics with the aim to increase overall efficiency of pathological

diagnosis and to have the performance tuned to high sensitivity for malignant cases. This

can potentially reduce reporting time and improve overall efficiency of pathological

diagnosis.
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1 Introduction

Cervical cancer is the 4th most common cancer worldwide and 14th most common cancer in

females in the UK [1], when detected at an early stage, the 5-year survival rate for people with

invasive cervical cancer is 92% [2]. The most common types of cervical cancers are squamous

cell carcinoma and adenocarcinoma. The majority of cases are associated with high risk

human papillomavirus (HPV) infection. Most cases of cervical cancer are preceded by pre-

invasive, dysplastic lesions (cervical intraepithelial neoplasia, CIN and cervical glandular

intraepithelial neoplasia, CGIN) and CIN can be graded to determine the risk of progression

to cancer and the need for further treatment. These abnormal cells can be detected by examin-

ing the lining of the cervix (cervical smear) and have formed the basis of cervical screening

programmes throughout the world, allowing early detection, treatment, and prevention of

invasive cancer. Following an abnormal smear result, the cervix is examined at colposcopy and

tissue biopsies taken to identify treatable pre-invasive lesions and also to identify invasive car-

cinoma. The majority of biopsies received by pathologists for reporting do not contain invasive

cancer which yields opportunities for Artificial Intelligence (AI) development in cancer detec-

tion to reduce the necessity of pathologist having to review the negative biopsies.

In modern clinical practice, digital pathology and its integration with AI has enabled true

utilisation and integration of knowledge that is beyond human limits and boundaries [3]. In

recent years, clinicians hope to take advantage of advances in digital imaging and machine

learning (ML) to improve medical image analysis. ML algorithms have been of great help in

many medical applications and can be used for early detection of cancerous regions [4–6].

However, manually extracting features (handcrafted), need expert domain knowledge and the

procedure is laborious and time-consuming. The high-level feature representation of deep

convolutional neural networks has proven to be superior to handcrafted low-level and mid-

level features. The main advantage of the deep learning is that it can automatically learn data-

driven (or task-specific), highly representative and hierarchical features, and performs feature

extraction and classification on a network, which is trained in an end-to-end manner.

A study is undertaken to compare the accuracy of medical image classification among three

types of machine learning models including Support Vector Machine (SVM), Artificial Neural

Network (ANN), and Convolutional Neural Network (CNN) [7]. To investigate changes in

accuracy related to image quality, a single dataset using two different file formats of DICOM

(Digital Imaging and Communications in Medicine) and JPEG (Joint Photographic Experts

Group) was constructed. CNN classification was accurate for both datasets even though the

JPEG format contains less colour information and data capacity than the DICOM format,

whereas SVM and ANN accuracy decreased with the loss of data from DICOM to JPEG

formats.

Deep learning algorithms are applied to medical image analysis and used for classification

and segmentation of medical images, including CT/MRI tomography, ultrasound, and digital

pathology [8].

Recently, deep learning has become the mainstream methodological choice for analysing

and interpreting histology images. Different machine learning and deep learning strategies

such as supervised, weakly supervised, unsupervised, transfer learning and various other sub-

variants of these methods [9] are applied to digital H&E-stained pathology images for colour

normalization, nuclei/tissue segmentation, and cancer diagnosis and prognosis [10]. The

experimental results of these studies demonstrates that deep learning is a promising tool to

assist clinicians in the clinical management of human cancers.

Clinical-level-aided diagnosis system for cervical cancer screening based on deep learning

are being investigated for efficient and high-accuracy predictions. Some studies built slide-

PLOS DIGITAL HEALTH Automated reporting of cervical biopsies using AI

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000381 April 22, 2024 2 / 27

UK on behalf of UK Research and Innovation

(UKRI) [project number: 104690], and in part by

Chief Scientist Office, Scotland. DJH, DHB, OA and

GB received funding from UKRI (funder project

reference: TS/S013121/1). MM, DM and CF

received salaries from UKRI for this project. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pdig.0000381


level classification systems by multi-stage designs. For example, Cheng et al. [11] designed a

robust and progressive WSI analysis method for cervical cancer screening. In the first stage,

the authors developed a progressive lesion cell recognition method combining low- and high-

resolution WSIs. Then, a RNN-based WSI classification model was built for WSI-level predic-

tions in the second stage.

A localized, fusion-based, hybrid imaging and deep learning approach [12] is introduced to

classify squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intrae-

pithelial neoplasia (CIN). The approach partitioned the epithelium into 10 segments and each

segment into 3 parts (top, middle, bottom) and uses a CNN to classify the top, middle and bot-

tom parts. The results are then fused to classify the segment and the whole epithelium.

Transfer learning using deep pre-trained convolutional neural networks is increasingly

used to solve numerous problems in the medical field [13]. In this study, we use pretrained

GoogleNet convolutional neural network for automated reporting of digital diagnostics within

the pathology AI stream of Industrial Centre for Artificial Intelligence Research in Digital

Diagnostics (iCAIRD). The aim is to increase overall efficiency of pathological diagnosis and

to have the performance tuned to high sensitivity for cervical malignant cases. The algorithm

is trained on 1738 cervical WSIs and evaluated on 801 WSIs in the test set and achieved 93.4%

malignant sensitivity for WSI diagnosis. Following appropriate clinical validation and regula-

tory clearance, the developed algorithms could be integrated into clinical workflow. Having a

tool for triage/identifying cancer and high grade lesions may potentially reduce reporting time

by identifying areas of interest in a slide for the pathologist and therefore improving efficiency.

2 Materials and methods

In this section, we cover the data preparation and annotation process, data splitting and the

overall structure of the classification algorithm and its steps in detail.

2.1 Data preparation and annotation process

The cervical tissue blocks for this study originate from Glasgow Royal Infirmary (NG), South-

ern General Hospital (SG), Royal Alexandria Hospital (RAH) and Queen Elizabeth University

Hospital (QEUH) (all in Glasgow, Scotland) each with independent tissue handling including

fixation and tissue processing. The number of tissue blocks obtained from each of the above

sites were: 829 from QEUH, 729 from NG, 647 from SG and 334 from RAH.

New tissue sections were cut from the tissue blocks at one of two different thicknesses (3

microns or 4 microns) and then stained with one of four different H&E protocols (routine

H&E, muscle biopsy protocol, neuro protocol and paeds protocol). Together, these combina-

tions gave eight different labs maximising WSI variance and thereby decrease the likelihood of

overfit to any one lab (combination of tissue processing, cutting and staining protocol).

All slides were then scanned at QEUH and saved as WSI. The WSI are hundreds of thou-

sands of pixels in height and width at the highest magnification and are too large to read into

memory. Dedicated WSI formats allow access to either small parts of the image at the highest

magnification or the whole image at lower magnifications. For this study, the slides were

scanned using a Phillips Ultra Fast Scanner (UFS) with resolution equivalent to 40x or more

specifically 0.25 microns/pixel, and stored in the isyntax file format. The most detailed view in

the WSI is level 0, or 40x magnification where the length of a side of 1 pixel in the image is

0.25μm. Higher levels represent lower magnifications in a pyramid where each level is a power

of 2 smaller than the previous. For example at level 5, one pixel represents a square patch at

level 0 with a length of 25 = 32 pixels per side, or an area of 32 × 32 = 1024 pixels in total.

PLOS DIGITAL HEALTH Automated reporting of cervical biopsies using AI

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000381 April 22, 2024 3 / 27

https://doi.org/10.1371/journal.pdig.0000381


The annotation process stratified slides into four main diagnostic categories which include

malignant, high grade, low-grade and Normal/inflammation. Each diagnostic category has

sub-categories. The categories and their sub-categories are defined as follows:

1. Malignant: Squamous cell cervical cancer (SCC) and adenocarcinoma (AC) are the most

common types of cervical cancer. Both of these are capable of local spread and metastasis.

Cervical glandular intraepithelial Neoplasia (CGIN) is an uncommon pre-invasive dysplas-

tic lesion of glandular cells which can develop into AC. There is histological overlap with

some well differentiated AC and this lesion tends to be treated more aggressively.

2. High Grade: Cervical intraepithelial neoplasia (CIN) is graded to determine risk of develop-

ment of cancer and to guide further management. Most countries have now moved to a

two tier classification for CIN (high grade and low grade). In the UK, pathologists still often

refer to the old three tier classification (CIN1/2/3). For the purposes of this algorithm we

classified ‘high grade’ lesions as those with morphological features of CIN 2 or 3.

3. Low Grade: A slide is labelled as low grade if it contains slightly abnormal cells on the sur-

face of the cervix (CIN 1) or low-grade changes that are usually caused by an HPV infection

(HPV). CIN 1 and HPV are not cancer and usually go away on their own without treat-

ment, but sometimes they can become cancer and spread into nearby tissue.

4. Normal/inflammation: Cervicitis is an inflammation of the cervix. Cervicitis is common

and may be caused by a number of factors, including infections, chemical or physical irrita-

tion, and allergies. Normal tissue and cervicitis fall within this category.

All slides from benign and malignant cervical biopsies were digitally scanned on a Philips

UFS Scanner as iSyntax Whole Slide Images (WSIs). WSIs were exported from the Philips

information management system and converted to OME-Tiffs using (Glencoe Software) to

make them compatible with QuPath [14] (Version v0.2.3) for annotation. The annotation pro-

cedure involved defining the main slide category, then manually annotating any additional

subcategories that could have been available on the WSI. The annotation vector files were

aligned to the original iSyntax images for analysis.

Each slide was randomly assigned to one of four participating Consultant Pathologists for

annotation. Each of the participating pathologists had a sub-specialist interest in Gynaecologi-

cal Pathology, and participated in the UK National Gynaecological Pathology External Quality

Assurance Scheme. Primary annotation was performed either by one of the four pathologists,

or by a biomedical scientist, who were specifically trained for this project. All annotations

done by a biomedical scientist were signed off by one of the study pathologists.

2.2 Data splitting to train, validation and test sets

We received a total of 2539 whole slide images (WSIs), with only one slide per patient, in iSyn-

tax format, an Excel file containing metadata, categories, and subcategories and an annotation

file per WSI in JSON format at the end of the annotation process. These WSIs were split into

training, validation and test sets as shown in Table 1.

The split percentages were calculated based on the case labels associated with the samples

recorded in the system and the numbers per each set were agreed on by all the team members

and the pathologists. All slides from two of the labs and 10% randomly selected slides from the

other six labs were set aside as test set and never used in the training and validation process.

The remaining 90% of the slides, from the 6 other labs were used as training and validation

sets. Two third of these slides were randomly selected and used as validation set. To retain the

the same proportion of classes in the train and test sets that are found in the entire original
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dataset, dataset was split using a stratified fashion balanced over categories, subcategories and

staining labs for training, validation and test sets. During the annotation process these labels

were doubled checked and in approximately 5% of the cases the final label associated with the

scanned slide was different. This could be because the new slice taken from the sample did not

show the same pathology as the original or that the original label was incorrectly recorded.

The corrected labels post annotation were the labels that were used for training and testing.

This means the final numbers of slides of each type in Table 1 may not match the original per-

centages described above.

We are seeking to make the data fully and publicly available and we are navigating the nec-

essary ethical approvals for releasing the data. Currently all the data for this study will be avail-

able on request for non-commercial and academic purposes from the director of iCAIRD

(david.harrison@st-andrews.ac.uk).

2.3 Overall structure of the classification algorithm

Fig 1 shows the overall structure of the pipeline for cervical WSI diagnosis. This pipeline con-

sists of different components, each described in details in following subsections.

Table 1. Distribution of samples in training, validation, and test sets for iCAIRD cervical dataset.

Category SubCategory Count Training Validation Test

Malignant - Squamous carcinoma 268 127 60 81

- Adenocarcinoma 107 243 23 38

- CGIN 92 41 19 32

- Other* 59 29 15 15

High Grade - CIN 2 320 141 71 108

- CIN 3 321 146 75 100

Low Grade - HPV 420 197 96 127

- CIN 1 362 169 84 109

Normal/inflammation - Normal/inflammation 590 268 191 131

Total 2539 1164 574 801

* Other subcategory in malignant are biopsies with a malignant diagnosis that don’t fall under adenocarcinoma or squamous carcinoma. Examples are involvement of

the cervix by endometrial tumours or metastases spread from tumours in other parts of the body or other types of malignant tumour that are not carcinoma (e.g.

sarcoma).

https://doi.org/10.1371/journal.pdig.0000381.t001

Fig 1. Architecture of the pipeline for cervical whole slide image diagnosis.

https://doi.org/10.1371/journal.pdig.0000381.g001
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2.3.1 Dataset creation and patch generation.

Dataset creation. Slides and their respective annotation files are loaded. The dataset builder

creates balanced training, validation, and test sets according to the dataset splitting rules

described in section 2.2.

Slide indexing. This pipeline step generates index files for the training and validation data-

sets created in the previous step, making the subsequent pipeline processes easier. The paths to

the slides, patch size, and the patch level at which patches are to be extracted are all contained

in dataframes called index files.

Patch finder. WSIs are too large to be loaded to memory for further processing. Hence,

using the paths in the index files, a low resolution version of each WSI (thumbnail) is gener-

ated to facilitate loading the entire image at once to the memory. To generate the down-

sampled version of the WSI, we need to define at which level of magnification (mag_level) we

want to read the WSI. When mag_level = 0, we are reading the WSI at the original level with-

out any downsampling. The width and height of the WSI are divided by 2(mag_level) for the

thumbnail. Non-overlapping patches are then found on the thumbnail. For example to extract

patches of size (256 × 256) pixels from the original WSI at highest resolution, if the thumbnail

is generated at level 5, the grid patch finder starts from the top left corner of the thumbnail and

find x, y coordinates of (8 × 8) pixels regions from the thumbnail which are equivalent to

(256 × 256) pixel regions in the original slide. Each pixel within the thumbnail corresponds to

a (32 × 32) pixel region in the original slide. These coordinates (top left position of the patches

found on the thumbnails) are then multiplied by 2(mag_level) to get their corresponding coordi-

nates on the original WSI.

Tissue detector. Most of the slide is background (non-tissue) and does not contain useful

information. To save on the computational cost, we remove background patches by applying a

tissue detector to the patches found in the previous step to segment the background from the

tissue. We follow a conservative method and label a patch as tissue, even if only one pixel in it

is tissue. Patches are then labelled as tissue or non-tissue to make it convenient to remove the

non-tissue patches from the dataset.

Patch labelling. Using the pixel level annotations provided by pathologists, each tissue

patch is then labelled with one of the main categories (malignant, high grade, low grade and

normal/inflammation). A patch with even one pixel from a most severe category (i.e. malig-

nant is the most severe category, followed by high grade, low grade and normal) will be

labelled as that most severe category (i.e. if only one pixel of a tissue patch is malignant and

rest are high-grade or any other category, that patch is labelled as malignant which is the most

severe category). A dataframe per slide containing the coordinates of the tissue patches and

their categories is the output of this step of the pipeline.

Dataset sampling. The dataframes from the previous step are combined to form a single

dataframe for the whole dataset. This makes it easier to know how many patches from each

category exist in the whole dataset. We can sample a balanced subset, or we can declare the

maximum number of patches to sample from each category. If the number of patches in a cate-

gory is less than the maximum number specified, then all the patches from that category will

be sampled. For the categories with more patches than the specified maximum number,

patches are sampled randomly.

Patch generation. Sampled patches for each category are physically generated and placed

in the folders with the same name as the categories defined for training and validation slides.

Physically generating patches at this step removes the need to load the WSI each time a patch

from that slide is accessed during training. It also saves on disk space by removing the back-

ground patches and reduces the computational cost of processing patches with no useful infor-

mation further.
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2.3.2 Patch level training and inferencing. After creating a dataset, we train the model

on the training and validate it on validation patch sets. The type of the model used, and its

parameters are described as follows:

Patch classifier. The patch classifier used is the pretrained standard GoogLeNet from

Torchvision library.

Data transformation. We augment the patch sets by applying few transformations from

torchvision.transforms module. We rotate the patches randomly by 0˚, 90˚, 180˚, 270˚ angles.

We change the brightness, contrast, saturation, and hue of the patches by ColorJitter(bright-
ness = 0.25, contrast = 0.75, saturation = 0.25, hue = 0.04). Finally, we convert the patches to

PyTorch tensors and normalise the image using Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), based

on mean and standard deviation in each colour channels in the range [−1, 1].

Loss function. If the dataset used for training is balanced over the categories, CrossEntropy-
Loss is used as loss function, otherwise FocalLoss [15] is used to address class imbalance by

applying a modulating term to the cross entropy loss in order to focus learning on hard mis-

classified examples.

Optimiser and scheduler. SGD optimiser with momentum = 0.9, learningrate = 0.001 and

weightdecay = 0.0005 is used to update the model parameters based on the computed gradi-

ents. A learning rate scheduler is used to adjust the learning rate during training. After every 2

epochs, the learning rate is reduced by a factor of learning rate (gamma = 0.5).

Parallelism. DistributedDataParallel (DDP) from PyTorch Lightning implements data par-

allelism at the module level and can be used for training on multiple GPUs. Since we are run-

ning our training on NVIDIA DGX-1, we use this plugin to speed up training by using

multiple GPUs.

Early stopping. The model is trained for maximum of 20 epochs. Early stopping is used to

avoid overfitting while training by monitoring the validation accuracy. If there is no improve-

ment in the validation accuracy after 10 iterations, the training procedure is terminated and

the best model with higher validation accuracy is saved.

Inference on training and validation datasets and computing patch level results. The

trained patch classifier model is used to make predictions on training and validation sets. This

is accomplished by evaluation of the model on all the tissue patches in each slide despite they

are used for training or not. Predictions are probabilities per category for each patch on the

slide. A binary heatmap is generated per category per slide using the patch probabilities.

Higher probabilities are shown as brighter pixels in a heatmap. The computed probabilities are

used to compute the final prediction at patch level for each slide and to create the patch level

confusion matrices for training and validation datasets.

Figs 2, 3, 4, 5 and 6 are examples of ground truth labels provided by the pathologists, the

generated patch level heatmaps for each category (normal, low grade, high grade, and malig-

nant), and a prediction heatmap (i.e. the patches predictions based on a specified threshold)

for different categories of slides. In all these examples, we are showing probabilities� 0.5 on

the generated heatmaps. We discuss these heatmaps in detail in section 4.

2.3.3 Slide level classification. There are different machine learning or deep learning clas-

sifiers that can be used as a slide level classifier [16]. We applied Random Forest and XGBoost
[17] classifiers separately to the features to get the final slide level diagnosis. We extract the fea-

tures from the heatmaps using skimage.measure.regionprops. The features extracted from the

heatmaps generated at patch level are used for training to form the final slide level predictions

for each slide. The features extracted are a refined combination of features stated in [18–20]

which are extracted for heatmaps generated per class.

Extracting features for Random Forest (RF) slide level classifier. To generate the features

for RF classifier, the heatmaps generated for the categories except for normal category (i.e.
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Fig 2. Patch level heatmaps for a malignant slide. (a):Truth Label (b): Normal (c):Low Grade (d): High Grade (e):

Malignant (f): Prediction.

https://doi.org/10.1371/journal.pdig.0000381.g002

Fig 3. Patch level heatmaps for a high grade slide. (a):Truth Label (b): Normal (c):Low Grade (d): High Grade (e):

Malignant (f): Prediction.

https://doi.org/10.1371/journal.pdig.0000381.g003

Fig 4. Patch level heatmaps for a low grade slide. (a):Truth Label (b): Normal (c):Low Grade (d): High Grade (e):

Malignant (f): Prediction.

https://doi.org/10.1371/journal.pdig.0000381.g004

Fig 5. Patch level heatmaps for a multilabel malignant slide. (a):Truth Label (b): Normal (c):Low Grade (d): High

Grade (e): Malignant (f): Prediction.

https://doi.org/10.1371/journal.pdig.0000381.g005

Fig 6. Patch level heatmaps for a multilabel high grade slide. (a):Truth Label (b): Normal (c):Low Grade (d): High

Grade (e): Malignant (f): Prediction.

https://doi.org/10.1371/journal.pdig.0000381.g006
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malignant, high grade, low grade) per slide, are thresholded at a series of different levels (0.5,

0.6, 0.7, 0.8, 0.9) to produce a set of binary images. For each binary image, the following global

features are then computed:

• area_ratio: the ratio of number of pixels over the given probability to the tissue area.

• prob_area: the sum of probability of all the pixels over the threshold divided by the tissue

area.

This results in 2 features at each threshold level for each of the three heatmaps. Hence, a

total of 30 global features from three heatmaps at 5 different threshold levels are extracted per

slide. Connected-component analysis is then applied to split the heatmaps into regions. Con-

nect-component analysis was implemented using the ConnectedComponents from scikit-

image. For the two largest regions, based on number of pixels, the following 10 regional fea-

tures are extracted using the regionprops function from scikit-image.

• area of the region

• the eccentricity of an ellipse that has the same second moments as the region

• the ratio of the area to the area of the bounding box

• the bounding box area

• the major axis length of the ellipse with the same second moments of area as the region

• the max intensity within the region

• the mean intensity within the region

• the min intensity within the region

• the aspect ratio of the bounding box

• the ratio of the area of the region to the area of the convex area

This resulted in a total of 60 features extracted from the 2 largest regions on each of malig-

nant, high grade and low grade categories of heatmaps. Combining the global and regional fea-

tures together gives a 90-dimensional feature vector per slide, to be used in training for the

slide level classifier.

Extracting and refining features for XGBoost slide level classifier. In order to refine the

features set and reduce the dimension, we conducted experiments to identify correlated fea-

tures. These experiments led to removal or replacement of some global and regional features

with some more useful features.

To generate global features for XGBoost classifier, the heatmaps generated for the two cate-

gories (i.e. malignant, high grade) per slide are thresholded at 0.5, 0.7, 0.9 levels to produce a

set of binary images. For each binary image, only the “area_ratio” (i.e. the ratio of number of

pixels over the given probability to the tissue area) is computed as a global feature. This

resulted in a total of 6 global features per slide. Connected-component analysis is then used to

detect 7 largest malignant, 5 largest high grade, 3 largest low grade, and 2 largest normal

regions from the heatmaps of each category. The regional features were extracted from the

detected regions. Since the trials revealed that some features did not significantly contribute to

dividing the feature space, they were eliminated for some category of the heatmaps. Table 2

shows the regional features set extracted for each category of heatmaps.

Regional and global features are combined to a features vector of 192 dimensions, and used

for slide level training using XGBoost classifier.
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Training and predicting slide level classifier with XGBoost. The extracted and refined

features from the heatmaps are used to train the XGBoost as the slide level classifier. XGBoost

is trained on the training set and then evaluated on the validation set. Since our datasets at

slide level are also imbalanced, therefore we use Weighted XGBoost and pass weights for high

grade, low grade and normal classes as 0.1 to the function. Other parameters of the XGBoost

are defined as n_estimators = 60 and max_depth = 3. We do the training for 20 epochs to get

the model with the highest accuracy and highest malignant sensitivity.

Training and predicting slide level classifier with Random Forest. Random Forest classi-

fier is trained on the features extracted from the heatmaps for 300 epochs. These features were

extracted from 3 largest clusters on malignant, high grade and low grade heatmaps generated

for each slide. We use a grid search on the parameters (n_estimator, criterion, max_features,

max_depth, min_samples_split, min_samples_leaf, bootstrap) of the classifier to find the best

parameter set and ultimately use the best model with the best parameter set for prediction.

Using Scikit-learn’s RandomizedSearchCV method, we can define a grid of hyperparameter

ranges, and randomly sample from the grid, performing K-Fold CV with each combination of

values. Table 3 shows the parameters searched and the result of tuning the hyperparameters to

find the best parameters for RF classifier for models trained on the features extracted from

heatmaps generated at patch level with patch sizes 256 × 256 and 1024 × 1024 pixels.

Table 2. Feature set extracted from each heatmap categories for training XGBoost slide level classifiers.

Features set extracted from heatmaps for slide level classifiers

Feature Malignant

heatmap

High Grade

heatmap

Low Grade

heatmap

Normal

heatmap

area of the region ✓ ✓ ✘ ✘
the bounding box area of the region ✓ ✓ ✓ ✓

the major axis length of the ellipse with the same second moments of area as the

region

✓ ✓ ✓ ✓

the max intensity within the region ✓ ✓ ✓ ✘
the mean intensity within the region ✓ ✓ ✓ ✓

the min intensity within the region ✓ ✘ ✓ ✘
area of convex hull ✓ ✓ ✓ ✘
area of region with all holes filled ✓ ✓ ✓ ✓

minor axis length of ellipse with same second moment of area ✓ ✓ ✓ ✓

diameter of the region ✓ ✓ ✘ ✘
Euler characteristic of the region ✓ ✓ ✓ ✘
perimeter of the region ✓ ✓ ✘ ✘

https://doi.org/10.1371/journal.pdig.0000381.t002

Table 3. Random search cross validation for hyperparameter tuning of Random Forest classifier.

Best parameters for Random Forest Classifier

Parameter name Parameter search range Best parameters for Patch size (256 × 256) Best parameters for Patch size (1024 × 1024)

n_estimators [100, 110, 120, . . ., 1500] 255 255

min_samples_split [2, 5, 10] 10 2

min_samples_leaf [1, 2, 4] 4 2

max_features [‘auto‘, ‘sqrt‘, ‘log2’] sqrt sqrt

max_depth [10, 20, 30, . . ., 110] 10 30

criterion [‘gini‘, ‘entropy‘] gini gini

bootstrap [True, False] True True

https://doi.org/10.1371/journal.pdig.0000381.t003
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3 Inter observer variations

In spite of the Bethesda system 2001 (TBS 2001) [21] formulating strict guidelines for report-

ing cervical smears, intra-observer and inter-observer variations are unavoidable and can be

considered an inherent part of the reporting system [22].

The inter-observer variability in grading CIN [23] can add a layer of complexity to the

training procedure using AI and cause an important issue for final diagnosis. CIN represents a

morphological continuum, but biopsies displaying this lesion are classified into two or three

grade categories [24]. The degree of agreement between two or more independent observers in

the clinical setting constitutes interobserver reliability and is widely recognized as an impor-

tant requirement for any behavioural observation procedure. Hence, a subset of test cervical

biopsies (total 200 samples, 50 from each category balanced over subcategories) were re-anno-

tated independently by three of the pathologists that annotated the whole slides for this project.

Table 4 shows the distribution of inter-observer subset over category and sub-categories.

Table 5 shows the agreement and disagreement of pathologists on the Categories and sub-cate-

gories on the 200 cervical samples. As this Table shows, the disagreement between pathologists

is higher on sub-categories, which in some cases have lead to disagreement on categories.

The variations of the observations can be on different categories and sub-categories.

Table 6 shows the result of comparing the original categories of these samples with the decision

made by each of the observers. All three observers agree on all malignant cases, but there are

some disagreements on other categories. The categories disagreements are sometimes because

of disagreement in the sub-categories. Table 7, shows where the disagreement lies in

subcategories.

3.1 Assessing reliability of annotations at slide level

In order to assess the reliability of the annotations, we use Cohen’s kappa [25]. This statistic is

used to measure the agreement between two observers. In the case of multiple observers, we

can calculate Cohen’s kappa for each pairs of observers [26] and then computed the arithmetic

Table 4. Distribution of samples in the test subset for inter-observer variation.

Category SubCategory Count Total

Malignant Squamous carcinoma 25 50

Adenocarcinoma 13

CGIN 7

Other 5

High Grade CIN 2 27 50

CIN 3 23

Low Grade HPV 32 50

CIN 1 18

Normal/inflammation Normal/inflammation 50 50

Total Samples 200

https://doi.org/10.1371/journal.pdig.0000381.t004

Table 5. Agreement and disagreement of the observers on the inter-observer subset.

Total Samples Agreed on category Agreed on sub category

Yes No Yes No

200 177 23 168 32

https://doi.org/10.1371/journal.pdig.0000381.t005
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Table 6. Matching observers assigned categories with original categories.

Original Category Observed Category Observer A Observer B Observer C

Malignant Malignant 50 50 50

High Grade 0 0 0

Low Grade 0 0 0

Normal/inflammation 0 0 0

High Grade Malignant 0 0 0

High Grade 49 48 47

Low Grade 1 1 3

Normal/inflammation 0 1 0

Low Grade Malignant 0 0 0

High Grade 3 1 2

Low Grade 43 49 43

Normal/inflammation 4 0 5

Normal/inflammation Malignant 0 0 0

High Grade 0 0 1

Low Grade 1 6 3

Normal/inflammation 49 44 46

https://doi.org/10.1371/journal.pdig.0000381.t006

Table 7. Matching observers assigned sub categories with original sub categories.

Squamous carcinoma Adeno carcinoma CGIN Other CIN2 CIN3 CIN1 HPV Normal/inflammation

Observer A Squamous carcinoma 25 - - - - - - - -

Adeno carcinoma - 12 1 - - - - - -

CGIN - - 7 - - - - - -

Other - - - 5 - - - - -

CIN 2 - - - - 25 1 1 - -

CIN 3 - - - - - 23 - - -

CIN 1 - - - - 2 1 14 1 -

HPV - - - - - - - 28 4

Normal/inflammation - - - - - - 1 49

Observer B Squamous carcinoma 25 - - - - - - - -

Adeno carcinoma - 13 - - - - - - -

CGIN - - 7 - - - - - -

Other - - - 5 - - - - -

CIN 2 - - - - 25 - 1 - 1

CIN 3 - - - - - 23 - - -

CIN 1 - - - - 1 - 16 1 -

HPV - - - - - - - 32 -

Normal/inflammation - - - - - - 6 44

Observer C Squamous carcinoma 25 - - - - - - - -

Adeno carcinoma - 12 1 - - - - - -

CGIN - - 7 - - - - - -

Other 1 1 3 - - - - - -

CIN 2 - - - - 24 - 2 1 -

CIN 3 - - - - - 23 - - -

CIN 1 3 - 11 3 1

HPV - - - - - - - 28 4

Normal/inflammation - - - - - 1 - 3 46

https://doi.org/10.1371/journal.pdig.0000381.t007
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mean of those values [27] for final Cohen’s kappa over all the observations. In this experiment,

we calculated Cohen’s kappa over both categories and subcategories between the 3 observers.

The Cohen’s kappa score is 89.56% over categories and 87.24% over subcategories. The scores,

measured for both cases, show a high level of agreement between the observers.

4 Results

In this section, we discuss the patch level and slide level results for cervical biopsies on training,

validation and test sets. To show the effect of patch sizes on the classification results, the

patches used for training are extracted from the WSIs with two different patch sizes,

(256 × 256) and (1024 × 1024) pixels, all at highest magnification level (level 0 or 40X) with no

overlap. We also have created two different balanced and imbalanced datasets to investigate

the effect of including all patches in the training or excluding some patches from some catego-

ries on the training accuracy.

All the experiments are carried out on NVIDIA-DGX-1 with 8 Nvidia Tesla V100 GPUs.

Training procedure is parallelised on 8 GPUs available to make efficient use of the resources

and speed up the training.

4.1 Patch level results

The standard pretrained GoogLeNet model from torchvision library is used as patch level

classifier.

Patches of size (256 × 256) and (1024 × 1024) pixels were extracted from tissue area of train-

ing and validation WSIs on a regular basis grid non-overlapping at highest magnification

(40X) to create two independent patch datasets. The total number of extracted normal patches

were more than the patches in other categories. Low grade and high grade extracted patches

were less than normal and malignant patches, as shown in Table 8.

Table 8 shows the total number of patches extracted from the tissue regions of training and

validation cervical WSIs for each category and the number of patches sampled for balanced

and imbalanced sets from extracted patches for training the patch classifier.

To create the patch dataset for training, we sampled randomly from extracted patches of

each category. We conducted experiments using two methods of sampling (balanced and

imbalanced sampling). In balanced sampling, we sampled equal number of patches randomly

from each category and used “CrossEntropyLoss” as our loss function while training. To have

the balanced set of patches, some extracted patches were excluded for training. Since we want

Table 8. Total extracted patches and used patched for training in each category for balanced and imbalanced patch dataset. (patch sizes (256 × 256) and(1024 × 1024)

pixels).

Dataset Category Patch size (256 × 256) Patch size (1024 × 1024)

Total extracted

patches

Sampled patches

(Imbalanced)

Sampled patches

(Balanced)

Total extracted

patches

Sampled patches

(Imbalanced)

Train Malignant 2,947,390 2,947,390 183993 225,415 225,415

High Grade 210,109 210,109 183,993 23,397 23,397

Low Grade 183,993 183,993 183,993 21,242 21,242

Normal 4,529,685 2,947,390 1839,93 411,620 225,415

Total 7,871,177 6,288,882 735,972 681,674 495,469

Valid Malignant 1,484,692 1,484,692 87,026 115,580 115,580

High Grade 102,929 102,929 87,026 11,046 11,046

Low Grade 87,026 87,026 87,026 9,959 9,959

Normal 2,169,250 1,484,692 87,026 205,008 115,580

Total 3,843,897 3,159,339 348,104 341,593 252,165

https://doi.org/10.1371/journal.pdig.0000381.t008

PLOS DIGITAL HEALTH Automated reporting of cervical biopsies using AI

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000381 April 22, 2024 13 / 27

https://doi.org/10.1371/journal.pdig.0000381.t008
https://doi.org/10.1371/journal.pdig.0000381


the performance tuned to high malignant sensitivity, it is preferred to use all the extracted

malignant patches in the training. Hence, in imbalanced sampling we used all the malignant

patches and sampled equal number of normal patches randomly and used all high grade and

low grade patches as they were less in number than malignant and normal patches. This

resulted in an imbalanced patch dataset. We used “FocalLoss“ as our loss function while train-

ing to address the issue of the class imbalance problem for this method.

For the models trained on the patch datasets created using patches of size (256 × 256) and

(1024 × 1024) pixels, in the following subsections the patch level confusion matrices for train-

ing and validation and test sets are displayed. The values in these confusion matrices are per-

centages of the patches from each category being classified correctly or misclassified as other

categories. In subsection 5.1, these confusion matrices are discussed and compared against

each other in details.

4.1.1 Patch level confusion matrices for patch size (256 × 256) pixels. Figs 7 and 8 show

the results of training the patch classifier on the balanced and imbalanced datasets for patches

of size 256 × 256 pixels for training and validation sets, respectively on train and validation

sets.

4.1.2 Patch level confusion matrices for patch size (1024 × 1024 pixels) pixels. Fig 9

shows the result of training the patch classifier on the imbalanced dataset for patches of size

1024 × 1024 pixels for training and validation sets. For the case of patch size (1024 × 1024), we

have not trained on balanced dataset. The reason is that the total number of extracted patches

Fig 7. Patch level confusion matrices for balanced cervical dataset. (a) Train set confusion matrix

(Accuracy = 79.58%) (b) Validation set confusion matrix (Accuracy = 74.98%).

https://doi.org/10.1371/journal.pdig.0000381.g007

Fig 8. Patch level confusion matrices for imbalanced cervical dataset. (a) Train set confusion matrix

(Accuracy = 90.35%) (b) Validation set confusion matrix (Accuracy = 82.23%).

https://doi.org/10.1371/journal.pdig.0000381.g008
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for low grade and high grade categories is too few compared to normal and malignant. Hence,

balancing the dataset means training on a very less number of patches, which is not ideal using

deep neural networks.

4.1.3 Patch level heatmaps. The heatmaps shown in Figs 2, 3, 4, 5 and 6 are examples of

correctly classified slides at slide level for different categories of cervical biopsies. In this sec-

tion, we show the heatmaps at patch level for all the malignant slides in validation set that have

been misclassified at slide level for imbalanced dataset with patch size 256 × 256 pixels. Each

row in Fig 10 show the truth label, different category binary heatmaps and predicted heatmap

for the malignant slides misclassified as high grade. Each row in Fig 11 show the truth label,

different category heatmaps and predicted heatmap for the malignant slides misclassified as

normal.

In Figs 2, 3, 4, 5, 6, 10 and 11, truth labels are the annotations displayed on the down-

sampled version of the image. Normal, low grade, high grade and malignant binary heatmaps

are generated using the patch probabilities computed through inferencing the trained model

on the tissue patches of each slide. Ultimately, the prediction heatmaps are, combining all 4

binary heatmaps into one thresholded by a value and shown in a colour per category.

Fig 9. Patch level confusion matrices for imbalanced cervical dataset. (a) Training set confusion matrix

(Accuracy = 87.85%) (b) Validation set confusion matrix (Accuracy = 84.96%).

https://doi.org/10.1371/journal.pdig.0000381.g009

Fig 10. Patch level heatmaps for malignant slides classified as high grade slides. (a):Truth Label (b): Normal (c):

Low Grade (d): High Grade (e): Malignant (f): Prediction.

https://doi.org/10.1371/journal.pdig.0000381.g010
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4.2 Slide level results

To get the slide level diagnosis, patch level results needs to be aggregated using machine learn-

ing or CNN classifiers. We have extracted the features from the generated heatmaps at patch

level and a trained two types of machine learning classifiers on the features to get the final diag-

nosis on the WSIs. XGBoost and Random Forest (RF) are the two classifiers that have been

used in this experiment. Each of these classifiers are trained on the respective set of features

extracted for these classifiers, as have been discussed in subsection 2.3.2.

4.2.1 Slide level results for patch sizes (256 × 256) pixels. The slide level results have

been computed using XGBoost and Random Forest (RF) classifiers, for both balanced and

imbalanced datasets. Figs 12 and 13 show the confusion matrices for balanced sets, and Figs 14

and 15 show the confusion matrices for imbalanced sets on training and validation sets for

XGBoost and RF classifiers.

4.2.2 Slide level results for patch sizes (1024 × 1024) pixels. Figs 16 and 17 show the

confusion matrices on train and validation imbalanced datasets using XGBoost and RF

Fig 11. Patch level heatmaps for malignant slides classified as normal slides. (a):Truth Label (b): Normal (c):Low

Grade (d): High Grade (e): Malignant (f): Prediction.

https://doi.org/10.1371/journal.pdig.0000381.g011

Fig 12. Slide level confusion matrices for balanced cervical dataset using XGBoost classifier for patch size

(256 × 256) pixels. (a) Training set confusion matrix (Accuracy = 92.61%) (b) Validation set confusion matrix

(Accuracy = 71.60%, Malignant sensitivity = 90.60%).

https://doi.org/10.1371/journal.pdig.0000381.g012
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classifiers. We do not have a balanced set for patches of size (1024 × 1024) pixels. The reason

for this has been discussed in earlier sections. The overall accuracy of the slide level classifier

for both XGBoost and RF are same, but the malignant sensitivity at slide level for XGBoost is

higher than RF due the larger number of the malignant slides classified correctly using

XGBoost.

Fig 13. Slide level confusion matrices for balanced cervical dataset using Random Forest classifier for patch size

(256 × 256) pixels. (a) Train set confusion matrix (Accuracy = 90.72%) (b) Validation set confusion matrix

(Accuracy = 73.34%, Malignant sensitivity = 82.91%).

https://doi.org/10.1371/journal.pdig.0000381.g013

Fig 14. Slide level confusion matrices for imbalanced cervical dataset using XGBooost classifier for patch size

(256 × 256) pixels. (a) Training set confusion matrix (Accuracy = 94.93%) (b) Validation set confusion matrix

(Accuracy = 75.61%, Malignant sensitivity = 94.02%).

https://doi.org/10.1371/journal.pdig.0000381.g014

Fig 15. Slide level confusion matrices for imbalanced cervical dataset using Random Forest classifier for patch

size (256 × 256) pixels. (a) Training set confusion matrix (Accuracy = 90.72%) (b) Validation set confusion matrix

(Accuracy = 73.34%, Malignant sensitivity = 82.91%).

https://doi.org/10.1371/journal.pdig.0000381.g015
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4.3 Test results

The trained models on the imbalanced dataset, with GoogLeNet classifier at patch level and

XGBoost as slide classifier trained on a refined set of features extracted from heatmaps gener-

ated at patch level, were chosen as our best and final models. These rained models are then

used to evaluate the performance of the trained model on the test set at patch level and slide

level.

4.3.1 Test patch level results. Total number of patches in the training set for malignant

and normal categories are equal for the imbalanced set and more than low grade and high

grade patches. Hence, the patch classifier has been able to classify these categories better than

the low grade and high grade categories and consequently more number of patches of these

two categories are classified correctly in the test set.

The annotations at patch level are not very accurate, and therefore the malignant patches

may contain some normal pixels and vice versa. This holds for patches from all categories.

That is the reason for the patches from categories which have been wrongly classified as other

categories. The overall accuracy of the patch level classifier over test set is close to the overall

accuracy over validation set at patch level for the GoogLeNet model trained on patches of size

(256 × 256) pixels. Both confusion matrices show that the patch classifier has been able to clas-

sify more number of normal and malignant patches correctly compared to the other catego-

ries. Fig 18 shows the confusion matrix over the test set at patch level for patch sizes

(256 × 256).

Fig 16. Slide level confusion matrices for imbalanced cervical dataset using XGBoost (Patch size = 1024 × 1024

pixels). (a) Training set confusion matrix (Accuracy = 90.98%) (b) Validation set confusion matrix

(Accuracy = 75.09%, Malignant sensitivity = 94.87%).

https://doi.org/10.1371/journal.pdig.0000381.g016

Fig 17. Slide level confusion matrices for imbalanced cervical dataset using Random Forest (Patch

size = 1024 × 1024 pixels). (a) Train set confusion matrix (Accuracy = 96.74%) (b) Validation set confusion matrix

(Accuracy = 77.53%, Malignant sensitivity = 92.13%).

https://doi.org/10.1371/journal.pdig.0000381.g017
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4.3.2 Test slide level results. Fig 19 shows the confusion matrix over the test set for patch

sizes 256 × 256 pixels. The trained patch level classifier was able to classify a high percentage of

the malignant patches correctly in the test set (see Fig 18). The slide level classifier is also tuned

toward getting higher malignant sensitivity. As the result, the malignant sensitivity over test

set is high and more number of the malignant slides are classified correctly compared to the

slides from other categories.

Figs 20 and 21 are examples of test cases correctly classified. Comparison of the prediction

heatmaps with the ground truths in both figures show that the trained model has been able to

classify the patches to a great extent and is able to classify the patches correctly for unseen data.

The slide level classifier has been able to draw proper conclusions for slide level diagnosis of

the test cases.

The pathologists that annotated the whole slide images believe, the potential time to exam-

ine the tissue and make a diagnosis on a case is approximately five minutes. The diagnosis

time of our developed algorithm on the all cases in the test set, running on the NVIDIA Tesla

V100 GPU, on average was 1.5 minutes per case. This algorithm runs in advance of a patholo-

gist looking at the slide, and can save pathologist’s time to a great extent.

4.3.3 Comparison of our algorithm with state of the art algorithms. Most of the avail-

able papers on cervical cancer detection are on CT/MRI/PET-CT, pop smear and cytology

images and they perform different type of segmentation and classification tasks. A recent

review of artificial intelligence in gynecological cancers [28] found thirty-four studies on cervi-

cal cancer, of which 18 used imaging data and 16 used value-based data. Three studies used

MRI images to predict the stage of cervical cancer. Fifteen studies used CT/MRI/PET-CT

images to predict recurrence and metastasis. Ten studies used clinical parameters to predict

the diagnosis. Six studies used clinical parameters to predict therapeutic courses. The dataset

used in our paper has not been used before and the task and the categories we perform

Fig 18. Patch level confusion matrix for test set using GoogLeNet classifier (Patch size (256 × 256),

Accuracy = 78.79%, Malignant sensitivity = 76.04%.

https://doi.org/10.1371/journal.pdig.0000381.g018
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Fig 19. Slide level confusion matrix for test set using XGBoost classifier(patch size 256 × 256), Accuracy = 71.53%,

Malignant sensitivity = 93.40%.

https://doi.org/10.1371/journal.pdig.0000381.g019

Fig 20. Heatmaps for a test set high grade slide classified as high grade. (a):Truth Label (b): Normal (c):Low Grade

(d): High Grade (e): Malignant (f): Prediction.

https://doi.org/10.1371/journal.pdig.0000381.g020

Fig 21. Heatmaps for a test set malignant slide classified as malignant. (a):Truth Label (b): Normal (c):Low Grade

(d): High Grade (e): Malignant (f): Prediction.

https://doi.org/10.1371/journal.pdig.0000381.g021
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classification on, are different. Despite these facts, we try to compare the performance of our

algorithm with some of the related state of the art papers.

The proposed algorithm in [11] is a progressive lesion cell recognition method combining

low-and high-resolution WSIs to recommend lesion cells and a recurrent neural network-

based (RNN) WSI classification model to evaluate the lesion degree of cervical WSIs. On inde-

pendent test sets of 1,170 patient-wise WSIs, this proposed algorithm has reached 95.1% Sensi-

tivity for classifying slides. In [29] a predictive model consists of two main phases is proposed.

A Mask R-CNN model segments and classify cells in all ThinPrep Cytologic Test (TCT)

images from patients into three classes and then a machine-learning model is used to classify

patients into two classes (normal vs. abnormal), using the combination of cell classification

from the best models constructed (T1, A3) and clinic diagnosis results. Table 9 shows compari-

son of the performance of our algorithm with some of the state of the art algorithms for cervi-

cal cancer classification considering the fact that the type of images used in these papers are

different from ours.

5 Discussion

5.1 Patch level results discussion

Comparing the patch level confusion matrices for balanced and imbalanced datasets with

patch size 256 × 256, in Figs 7 and 8, the trained model on larger dataset (imbalanced) has an

overall higher accuracy for both training and validation sets. However, looking at the percent-

age of correctly classified patches in each category, the model trained on the balanced dataset

has performed better on classifying the low grade and high grade categories. This is expected

as the number of the patches in all categories are similar in the balanced case and therefore the

model ins not biased to a specific category. But as we want to use all the malignant patches in

the training procedure, and there is not enough patches in low grade and high grade categories

compared to malignant and normal categories, we make use of FocalLoss to handle the imbal-

anced class training by adjusting the weights for hard or easily misclassified examples.

Although cell characteristics can be extracted from individual patches, but higher level

structural information, such as the shape or extent of a tumour, can only be captured when

analysing larger regions. Due to the limitation of the input size of the images that can be fed to

CNNs, optimization challenges and graphical memory constraints, the whole WSI can not be

fed to the CNN. To be able to make use of higher level structural information in the training,

we decided to train the model with the largest patch size possible, extracted from WSIs. Hence,

patches of 1024 pixels, the maximum size we could pass as input to the model considering the

memory limitations, were extracted and used for training.

Comparison of the results of training the model on two different patch sizes, in Figs 8 and

9, show the improvement in overall accuracy over the validation set for larger patch sizes. The

model trained on larger patch sizes is also able to better distinguish between the normal and

malignant patches, while there is still a lot of confusion classifying neighbouring categories,

Table 9. Comparison of our algorithm with state of the art algorithms.

Paper Dataset Algorithm Test Slides Sensitivity

Our paper Hematoxylin and Eosin Stained (H&E) Whole Slide Images GoogLeNet + XGBoost 801 93.40%

[11] Cytology

Whole Slide Images

RNN 1170 95.1%

[29] ThinPrep Cytologic Mask R-CNN + XGBoost Test

(TCT) images

400 91.92% ± 5.2

96.21% ± 4.1

https://doi.org/10.1371/journal.pdig.0000381.t009

PLOS DIGITAL HEALTH Automated reporting of cervical biopsies using AI

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000381 April 22, 2024 21 / 27

https://doi.org/10.1371/journal.pdig.0000381.t009
https://doi.org/10.1371/journal.pdig.0000381


specifically low grade and high grade categories. The high grade and low grade categories are

clinically so close and have a lot of histological overlap, and therefore confusion in distinguish-

ing the patches of these categories was expected.

In summary, some reasons for the problems in accurately classifying the categories appro-

priately can be outlined as following:

• The histological overlapping of features at patch level makes it difficult for the AI algorithms

to distinct different categories or sub-categories from each other, which results in misclassi-

fying the patches and therefore affecting the final slide level prediction.

• In case of imbalanced datasets, the number of normal and malignant patches extracted and

used for training have been far more than the low grade and high grade patches and there-

fore the trained model have learned the distinction features of these categories better.

• Each category contains sub-categories, and patches extracted for each category can be imbal-

anced between the subcategories as well. Imbalanced subcategories patches can affect the

ability of the model to learn one subcategory better than the other with fewer patches in the

dataset.

• The annotation precision also can affect the patch level results. Due to the fragmented nature

of cervical biopsies, it is quite difficult to annotate them at pixel level precisely and most of

the time annotations from one category may contain other subcategories or even categories

in them. This leads to more complexity in distinction between the patches, specifically with

smaller patch sizes.

Heatmaps generated at patch level, can support explainability of deep learning predictions

in medical image analysis and provide clinicians with crucial visual cues that could ease their

decision to accept or reject a deep learning based diagnosis. All the cases shown in subsection

2.3.2, are examples of the slides of different categories, that have been classified correctly.

Comparing the truth label with prediction heatmaps of all these cases show, quite high per-

centage of patches have been classified correctly at patch level for slides containing only one

sub-category in them (i.e. Figs 2, 3 and 4). This is an evidence of how well the patch classifier is

able to distinguish between each of the categories and normal category.

Figs 5 and 6 are multi-label case containing more than one category in them. Comparing

the truth label and prediction heatmaps for these cases show, how patch level classifier have

been confused classifying some patches from neighbouring classes. These confusions are most

likely due to histological overlap of neighbouring classes. The other reason is due to fewer

number of patches in training set for some categories, the patch level has not been able to learn

the distinction between features of the patches of neighbouring categories. Slide level classifier

has been able to resolve these confusions and make the correct final slide level classification for

these cases.

The slides, in Fig 10, are malignant slides that are misclassified as high grade. High-grade

glandular abnormality (cervical glandular intraepithelial neoplasia (CGIN)), was put into the

malignant category as it is usually treated more aggressively, but there can be histological over-

lap with some well differentiated adenocarcinomas that make it challenging to be differenti-

ated. One possible solution was to consider CGIN and Adenocarcinoma as separate categories,

but due to fewer cases of these two types, trying out this did not improve accuracy of our classi-

fication, and therefore we decided to keep the categories and sub-categories as were defined in

Table 1.

The first and third rows in Fig 10 show heatmaps for malignant slides (CGIN) misclassified

as high grade. CGIN is an in-situ/preinvasive lesion and at patch level and has some nuclear
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features similar to the high grade areas. The red box in Fig 22 shows a fragmented CGIN area

on the surface of the cervix. The features of it at patch level histologically overlaps with high

grade CIN. The blue box shows a CGIN area which is not fragmented and correctly classified

as malignant at patch level. There are malignant areas wrongly classified as high grade, as

shown in Fig 10f in first and third rows, in blue colour. The histological overlapping of features

at patch level as is mentioned in the beginning of this paragraph is the reason for this predic-

tion and the probable reason for the slide level classifier to classify the slide wrongly at slide

level.

The second case (second row) in Fig 10, is also a malignant case (squamous carcinoma)

which is the most common type of cervical cancer. Comparing the truth label (Fig 10a in sec-

ond row) with the prediction heatmap (Fig 10f in second row) show that the patch level classi-

fier has performed well in picking up the high grade and malignant abnormalities. There is a

small invasion in the malignant area, pointed by arrows in the red box in Fig 23. The low grade

areas predicted (green areas in Fig 10f in second row), are just normal squamous with reactive

changes that can be histological overlap with low grade lesions at a patch level.

The fourth case (fourth row) is a malignant (CGIN) slide. The predicted heatmap in Fig 10f

in the fourth row, shows that malignant abnormality has been picked up correctly at patch

Fig 22. Histological overlap between Fragmented CGIN, on the surface of the cervix and high grade CIN at patch

level.

https://doi.org/10.1371/journal.pdig.0000381.g022

Fig 23. Example of histological overlap between normal squamous with reactive changes and low grade lesions at

patch level.

https://doi.org/10.1371/journal.pdig.0000381.g023
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level (the area shown by the red box in Fig 24). The squamous area underneath the malignant

area is low grade/viral. The area annotated as high grade in Fig 10a in the fourth row, contains

some low grade CIN/HPV (the area shown by the blue box in Fig 24) which is predicted cor-

rectly in Fig 10f in the fourth row. The other parts of high grade wrongly classified as low

grade can be the result of histological overlap between low grade and high grade at patch level.

Fig 11 shows examples of malignant slides are misclassified as normal. Most of these slides

contain small fragments of tumour which are picked up correctly by the patch level classifier

(small tumour fragments within blood and fibrinoid material, red boxes in Fig 25). There are

other areas picked up by the classifier as malignant tissue that are non-diagnostic in isolation

(blue box with necrosis in Fig 25). The proportion of malignant patches on these slides is

much smaller than the proportion of normal patches. Even though the patch classifier has

been able to classify the malignant patches on these slides, the slide level classifier has not been

able to draw the final correct decision for these slides.

5.2 Discussion on slide level results

For 256 × 256 patches, the slide level malignant sensitivity using XGBoost classifier as slide

level classifier is 90.6% and using RF is 82.91% on validation set for balanced cervical dataset

and for imbalanced datasets is 94.02% for XGBoost and 91.45% for RF.

Fig 24. Example of histological overlap between low grade and high grade at patch level.

https://doi.org/10.1371/journal.pdig.0000381.g024

Fig 25. Small tumour fragments with blood and fibrinoid materials.

https://doi.org/10.1371/journal.pdig.0000381.g025

PLOS DIGITAL HEALTH Automated reporting of cervical biopsies using AI

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000381 April 22, 2024 24 / 27

https://doi.org/10.1371/journal.pdig.0000381.g024
https://doi.org/10.1371/journal.pdig.0000381.g025
https://doi.org/10.1371/journal.pdig.0000381


For 1024 × 1024 patches, the malignant sensitivity for XGBoost classifier at slide level is

94.87% and for RF is 92.31% on validation set for imbalanced cervical dataset.

Although overall accuracy of RF at slide level is higher than XGBoost for both patch sizes

on the balanced dataset, RF has misclassified some more of malignant slides for normal, high

grade and low grade categories. For the imbalanced dataset, overall accuracy of both the slide

level classifiers are the same, but XGBoost has been able to classify a higher number of the

malignant slides correctly. Hence, we can conclude that XGBoost classifier has an overall bet-

ter performance than RF for being able to recognise more numbers of malignant slides

correctly.

6 Conclusion

In this paper, we present an AI algorithm, trained and evaluated on cervical biopsies. The aim

is to increase overall efficiency of pathological diagnosis by having the algorithm detect com-

mon patterns. We also want to have the performance tuned to high sensitivity for malignant

cases, which could be expedited for pathologist assessment. The dataset being imbalanced,

annotation limitations and the difficulty in distinction between some categories and sub-cate-

gories due to similarity in morphological structures, add layers of complexity to the training

procedure. Despite all these, the developed algorithm performed well in classifying malignant

cases against the other categories, and it reached 93.40% malignant sensitivity for classifying

slides on test dataset. The performance of the algorithm on the low grade and high grade cate-

gories can be improved by introducing more variations of these cases to the training set. There

is potential for the developed algorithm to be a useful clinical tool for pathologists and war-

rants further validation at larger scale. The code and the trained models for this paper is avail-

able at [30].
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