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Abstract

In the quantification of symptoms of Parkinson’s disease (PD), healthcare professional

assessments, patient reported outcomes (PRO), and medical device grade wearables are

currently used. Recently, also commercially available smartphones and wearable devices

have been actively researched in the detection of PD symptoms. The continuous, longitudi-

nal, and automated detection of motor and especially non-motor symptoms with these

devices is still a challenge that requires more research. The data collected from everyday

life can be noisy and frequently contains artefacts, and novel detection methods and algo-

rithms are therefore needed. 42 PD patients and 23 control subjects were monitored with

Garmin Vivosmart 4 wearable device and asked to fill a symptom and medication diary with

a mobile application, at home, for about four weeks. Subsequent analyses are based on

continuous accelerometer data from the device. Accelerometer data from the Levodopa

Response Study (MJFFd) were reanalyzed, with symptoms quantified with linear spectral

models trained on expert evaluations present in the data. Variational autoencoders (VAE)

were trained on both our study accelerometer data and on MJFFd to detect movement

states (e.g., walking, standing). A total of 7590 self-reported symptoms were recorded dur-

ing the study. 88.9% (32/36) of PD patients, 80.0% (4/5) of DBS PD patients and 95.5% (21/

22) of control subjects reported that using the wearable device was very easy or easy.

Recording a symptom at the time of the event was assessed as very easy or easy by 70.1%

(29/41) of subjects with PD. Aggregated spectrograms of the collected accelerometer data

show relative attenuation of low (<5Hz) frequencies in patients. Similar spectral patterns

also separate symptom periods from immediately adjacent non-symptomatic periods. Dis-

criminative power of linear models to separate symptoms from adjacent periods is weak, but

aggregates show partial separability of patients vs. controls. The analysis reveals differential
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Feasibility and patient acceptability of a

commercially available wearable and a smart

phone application in identification of motor states

in parkinson’s disease. PLOS Digit Health 2(4):

e0000225. https://doi.org/10.1371/journal.

pdig.0000225

Editor: Danilo Pani, University of Cagliari:

Universita degli Studi Di Cagliari, ITALY

Received: May 24, 2022

Accepted: March 3, 2023

Published: April 7, 2023

Copyright: © 2023 Liikkanen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Study report tables

and listings: https://www.kaggle.com/datasets/

sammeliliikkanen/supporting-material-daisy-

report-listings?select=DAISY+3128001+Report

+listings.pdf Wearable data set: https://zenodo.org/

record/7733019#.ZBCIny8RoQ0 0MJFF dataset

can be accessed through MJFF from: https://www.

synapse.org/#!Synapse:syn20681023/wiki/.

https://orcid.org/0000-0001-6705-9785
https://orcid.org/0000-0003-1621-8752
https://doi.org/10.1371/journal.pdig.0000225
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000225&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000225&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000225&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000225&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000225&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000225&domain=pdf&date_stamp=2023-04-07
https://doi.org/10.1371/journal.pdig.0000225
https://doi.org/10.1371/journal.pdig.0000225
http://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/datasets/sammeliliikkanen/supporting-material-daisy-report-listings?select=DAISY+3128001+Report+listings.pdf
https://www.kaggle.com/datasets/sammeliliikkanen/supporting-material-daisy-report-listings?select=DAISY+3128001+Report+listings.pdf
https://www.kaggle.com/datasets/sammeliliikkanen/supporting-material-daisy-report-listings?select=DAISY+3128001+Report+listings.pdf
https://www.kaggle.com/datasets/sammeliliikkanen/supporting-material-daisy-report-listings?select=DAISY+3128001+Report+listings.pdf
https://zenodo.org/record/7733019#.ZBCIny8RoQ0
https://zenodo.org/record/7733019#.ZBCIny8RoQ0
https://www.synapse.org/#!Synapse:syn20681023/wiki/
https://www.synapse.org/#!Synapse:syn20681023/wiki/


symptom detectability across movement tasks, motivating the third part of the study. VAEs

trained on either dataset produced embedding from which movement states in MJFFd could

be predicted. A VAE model was able to detect the movement states. Thus, a pre-detection

of these states with a VAE from accelerometer data with good S/N ratio, and subsequent

quantification of PD symptoms is a feasible strategy. The usability of the data collection

method is important to enable the collection of self-reported symptom data by PD patients.

Finally, the usability of the data collection method is important to enable the collection of

self-reported symptom data by PD patients.

Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders with a prev-

alence of 1–2 per 1000 persons, rising with age [1]. The disease primarily affects dopaminergic

neurons in a specific brain area, substantia nigra, leading to typical motor symptoms [2].

Patients with PD suffer also from non-motor symptoms such as constipation, orthostatic

hypotension, depression, anxiety and cognitive problems, which may even precede motor

symptoms [2]. As disease-modifying treatments are still waiting to be discovered, understand-

ing the subjective nature of the disease and how the person perceives his/her symptoms, as

well as how motor and non-motor symptoms are associated with the current therapies in PD,

is vital to effectively personalise the treatment [3].

Most of the patients with PD are treated with the dopamine precursor levodopa (LD) [4].

With the progression of PD, patients begin to experience wearing-off symptoms, i.e., fluctua-

tions in tremor and mobility as well as appearance of involuntary movements (dyskinesia),

due to variation in LD plasma concentrations [4]. Patients with advanced LD-treated disease

may experience rapid motor symptom exacerbations, i.e., ON-OFF phenomena [5].

Various scale and diary tools have been developed for the assessment and recording of PD

symptoms, but these tools have certain limitations and may be an extra burden to patients

[6,7]. Assessment scales are liable to subjective interpretations and reliability of diary data may

be compromised by deficient memory functions of the patients [6,8]. Continuous monitoring

of both motor and non-motor symptoms in patients with PD would offer an opportunity to

improve therapeutic regimens in both standard care and especially in clinical trials where

accuracy in valuation of treatment effects is critical [9]. Both patients and health care profes-

sionals see promises in wearable monitoring technologies in supplementing and improving

the care of PD [8,10]. Several solutions for continuous monitoring of PD have been presented

[11,12]. Many of the technologies require use of several sensors attached to the body [11–13].

However, patients with PD prefer small, easy-to-use devices that would not interfere with their

daily routine [8,10]. Several studies have evaluated the feasibility and accuracy of data collected

using a smartwatch and smartphone [14–16]

A substantive literature on detection of Parkinson symptoms from wearable data exists

[17,18]. In the present study, we explored whether use of a commercially available wearable

device together with a mobile application allows capturing data that would further enable reli-

able assessment of motor fluctuations and dyskinesia in PD patients. The primary objective of

the study was identification of OFF symptoms, as perceived by the subject, with reasonable

accuracy from real-world data collected with commercially available Garmin Vivosmart 4

wearable device and a mobile application.
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As our own data was collected in the real-world settings and thus was noisy, and the popu-

lation size was limited, we also acquired and re-analysed a dataset (“MJFFd”) from the Levo-

dopa Response Study, funded by the Michael J. Fox Foundation [16]. From MJFFd, we found

that it is easier to spot symptoms during specific motor activities. This is because the patient’s

movement state during the task affects symptom detection. To address this, we trained a deep-

learning model, VAE, to condense information from accelerometer signals [19]. To check if

the VAE was effective, we used it to predict the motor task being performed from the represen-

tation it generated from the accelerometer data. The accuracy of the VAE’s predictions sug-

gests that it is capable of capturing meaningful movement states. VAEs or similar

unsupervised models could therefore be useful in future to detect movement states where

symptoms are prominent.

Material and methods

Study description

This was an open, non-randomized, real-world data study. Patients fulfilling the diagnostic cri-

teria for PD [20], receiving LD treatment, and with a history of motor fluctuations, i.e., daily

LD-treatment related changes in the severity of tremor, bradykinesia and/or rigidity were

included. Six patients had advanced PD had Deep Brain Stimulation (DBS) devices. Two

patients had Activa PC (Medtronic) and four St. Jude Medical Infinity (Abbott) electrodes.

The participants were recruited at outpatient clinics of Helsinki University Hospital, Oulu

University Hospital and Turku University Hospital by neurologists with expertise in PD.

Spouses of the PD patients, free of any neurological disorder, were invited as control subjects.

All the subjects gave their written informed consent for voluntary participation in the

study. The study was approved (R19051 June 4th, 2019) by the Research Ethics Committee of

the Pirkanmaa Hospital District, Finland.

There were two visits to the study sites during the study. The first visit was a combined

screening and training visit. The screening (Baseline characteristics, Hoehn and Yahr stage,

and Unified Parkinson’s-disease rating scale (UPDRS parts I-IV)) was performed by an inves-

tigator and the training was provided by a study nurse. After this visit, the study subjects’

everyday life was followed for approximately four weeks with a wearable device. This follow-

up period included two 3-day intensive data-collection periods, when subjects were specifically

requested to report about all their symptoms very accurately. The second visit to the study cen-

tre (end-of-study visit) took place within 7 days after completion of the follow-up period. At

the end-of-study visit, UPDRS II (Self-evaluation of activities of daily living) scale was assessed

for the PD patients by the study nurse. In addition, a usability questionnaire was completed

for all subjects by the study nurse who also interviewed the subject. The study design is pre-

sented in Fig 1.

The study intervention was Garmin Vivosmart 4 (Firmware versions were v3.10, v4.00,

v4.10 and v4.20) as automatically updated by the vendor during the study period. However, as

the data analysis of movement data was based on the raw data accessed straight from the accel-

erometer sensor, these updates had no impact on the results and a bespoke Android mobile

application specifically designed and built for this this study (Xiaomi mobile phones with

Android v8.10). The application included three key functionalities:

1. a medication reminder feature for levodopa and other PD related medication schedule, that

was set up together with the study nurse at screening/training visit,

2. symptom collection feature with which the subject was able to record motor and non-

motor symptoms, both during the symptoms and/or retrospectively, and
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3. automatic transfer of the Garmin wearable data (and patient reported data from mobile app

to server via mobile network.

Both Garmin wearable and the mobile app were set to use the same clock server to ensure

accurate labelling of the data by a subject. Accelerometer raw data was sampling rate was

50Hz, heart rate 1 1

3
Hz, and heart rate variability 1 1

3
Hz. The high-level data collection architec-

ture of wearable and the mobile app is described in Fig 2, and example screens of mobile are

shown in Fig 3.

The total numbers of subjects planned was 50 (30 subjects with PD and 20 control subjects

without PD). The actual number of enrolled subjects was 65 (42 subjects with PD and 23 con-

trol subjects without PD). The difference was explained by high interest for participation. Of

the 65 subjects, 3 subjects (all PD patients) had little to no real-world data to be used in the

analysis because of premature discontinuation (2 subjects) or technical data transfer issues (1

subject). The data from these subjects were not used in analyses.

Statistical methods

Demographic and baseline characteristics as well as all applicable efficacy and safety data were

summarised using descriptive statistics. No formal statistical hypotheses were specified for this

study. The number of participants was based on assumption of events required for distinction

of subjects with PD and control subjects. No formal sample size calculation was used. Wear-

able and mobile-device data collected from subjects with PD and without PD during the fol-

low-up period were analysed by using exploratory data analysis with R and Stan.

Symptom diary data

During the follow-up period, subjects’ everyday life, as well as motor and non-motor data were

measured and collected with the sensors of commercially available Garmin Vivosmart 4 wear-

able device from all the subjects. Levodopa treatment intake and subjective symptom data

were collected with a mobile device application from subjects with PD. The symptoms were

collected by allowing a subject to report “a bad moment” by pushing one specific button

designed to be easily accessible within the front page of the mobile application. Once a symp-

tom had finished, the subject was accordingly able to end the symptom reporting by similar

one button in the front page. After this, subject was asked to classify this symptom by either

choosing the correct symptom from a pre-defined list (tremor, rigidity, slowness, dyskinesia,

Fig 1. The Study design.

https://doi.org/10.1371/journal.pdig.0000225.g001
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balance, sleeping disturbances, anxiety, dizziness, hallucination, symptom of smelling or tasting,

symptom of urination) built into the application or as free text under the heading ‘other’. In the

analysis, symptoms were divided into tremor and other movement symptoms. Totally there

were sensor data from 578 tremor events and 2253 events with other symptoms.

Accelerometer data

Only the data from the three-axis accelerometer of the wearable device were used. With its

recording rate of 50 Hz, blocks of 65536 samples (21.8 minutes each), interleaved for double

cover, were analyzed spectrally. The time scale of 21.8 minutes was chosen to be like the time

scale of the reported symptoms in diaries, which typically was on the order of tens of minutes.

Fig 2. The data collection architecture of the Garmin wearable and the mobile app.

https://doi.org/10.1371/journal.pdig.0000225.g002
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Blocks with apparent sampling problems, as discovered by time stamps of the samples, were

discarded. In total, recordings from 62 subjects covered 191,411 blocks of which 169,627 (total

of 88% were accepted).

Spectral pre-processing pipeline

Spectral processing included Fast Fourier Transform (FFT), and subsequent calculation of log-

arithmic, dB-scale power spectra at 10–15 bins depending on analysis, logarithmically spaced.

In addition to the original channels (x, y, z), we calculated auxiliary, derived channels. Neither

of these virtual channel sets provided markedly improved S/N ratio compared to the original,

but for completeness, we describe them here, and they also appear in the later analyses.

The first set of derived channels was aligned to an estimate of gravity (g), and its temporal

differentials (here called dg, ddg), which are orthogonal to g. Lacking gyroscopes, gravity can

only be estimated more or less poorly. Our estimate of g was obtained by (causal) 0.1Hz low-

pass filtering; this gives a good approximation when the subject is still, otherwise not. This

gives us another, moving coordinate system for the measurements. The aim, however, was just

to get another, potentially useful, moving coordinate system for the measurements.

The second set of derived channels (*-PC1, *-PC2) was obtained by first taking an orthogo-

nal channel triplet (either of the two above), then after FFT finding, for each frequency and

sample, the two principal axes of oscillation described by the frequency-wise three complex

numbers and measuring amplitude of these oscillations. Technically, this is an eigenvalue

decomposition of a matrix. Attractively, these two derived channels are invariant to (fixed)

rotations of the device coordinate system.

Discriminative models in this paper are linear and based on the logarithmic (dB-scale)

power spectra of the accelerometer signal.

Characterization and separability of symptom events

Detection of symptoms from the accelerometer signal can only be accurately assessed with a

ground truth for comparison. In contrast to the MJFF study, where third-party assessment of

symptoms is available in a temporally accurate form, our ground truth is based on patient

diary entries. These entries may not always be recorded during the actual occurrence of

Fig 3. Examples of the mobile app features (from left to right: the main page, adding of symptoms, medication reminder and list of reported

symptoms).

https://doi.org/10.1371/journal.pdig.0000225.g003
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symptoms, and the reported durations may sometimes be longer than the actual duration of

the symptoms. As a result, we chose to synchronize our analysis to the middle of the reported

symptom period, and we rejected symptoms with reported durations longer than two hours.

To characterize the average strength of symptoms (indexed here by i, with subject identities

ignored) around the central timestamp (at relative time t), and across frequencies (f) and chan-

nels (c), we used a factorial model, for tremor and other symptoms separately. As its output,

such a model produces three envelopes (separately for both symptom types; see Fig 4): tempo-

ral shape, spectral shape, and strength across channels. If we denote the logarithmic amplitude

of symptom i by Litfc, the model is simply Litfc � Nðutvf wc þ b; s2Þ, where the coefficients u,

v, and w characterize the temporal, frequency, and channel shape of the symptom, respectively,

b is an intercept (baseline), and σ2 the error variance. The model was fitted with maximum

likelihood, equivalent to least squares in this case, using the optimization feature of Stan.

Methods with the MJFF dataset

The MJFF Levodopa-Response study dataset contains accelerometer measurements from 30

participants, with and without levodopa infusion (“drug state” in later discussion), in different

tasks, and some repetitions within the task. For each of these replicates, or combinations of the

afore-mentioned variables, tremor, bradykinesia, and dyskinesia are scored by external observ-

ers onto an ordinal scale. Of all available data, we used only accelerations from the dominant

hand, and the observer scores.

To get scalar measures of symptoms for replicates as seen in the accelerometer data, we

trained ordinal (linear) regression models for each symptom, on spectral features of the accel-

erometer data. The models were L2-regularized with the regularization coefficients cross-vali-

dated. This left us with three models, one for each symptom type (tremor, bradykinesia,

dyskinesia). The replicates were then scored with the models to get an indicator of symptoms

(“accelerometer score”), parallel to the observer scores, that is a function of accelerometer data

only.

Fig 4. Spectral, temporal, and across-channel envelopes of tremor symptom data (top) and rest of the symptoms data

(bottom).

https://doi.org/10.1371/journal.pdig.0000225.g004
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Spectral analysis pipeline for the MJFF data was mostly identical to that applied to our own

data, described above. All the three original accelerometer channels were used, with the three

derived “g-channels” (g, dg, ddg), all with eleven frequency bins with logarithmic placements,

for logarithmic, dB-scale spectral-power features.

With the observer and accelerometer scores available, we studied how symptoms, as defined

by those scores, are affected by the drug state and task, with the subject-level variation con-

trolled. For this, we modelled the scores with Bayesian linear models, the models having ran-

dom-effect terms for various levels of replications (subject, task, drug state, session number

within visit). The model for accelerometer scores was with multinormal residuals (all symp-

toms combined into the same model). The observer models were with ordinal logistic (and

separate because the bradykinetic scores had lots of missing values). The models were fitted

with Stan using the R package brms [21].

Training variational autoencoders (VAE)

A common approach in supervised learning situations where labelled data is expensive to pro-

duce, but unlabelled is cheap, is to combine unsupervised and supervised learning. The unsu-

pervised learning part typically uses a large collection of data relevant to the task, but not

specifically labelled for it. A suitable model is chosen that can learn general representations of

the unlabelled data, which are then used as input in a downstream predictive task with task-

specific labelled data.

To test whether a VAE can create useful representations of movement states (different

motor tasks in MJFFd) from accelerometer data, we used a subset of the MJFFd data to first

train a VAE, and then used the trained VAE to create representations for accelerometer data

with the task of predicting which of the predetermined tasks the patient was performing.

Results

Background variables

Study consisted of 42 PD patients and 23 controls. Six of the PD patients had DBS (DBS PD)

devices. Overall, the general demographic and baseline characteristics were similar between

PD patients and controls (Table 1).

All DBS PD subjects except one were on levodopa medication at screening visit. Of the 42

subjects with PD (including DBS PD), 34 subjects were also treated with other medications for

PD in addition to levodopa, dopamine agonists (67% of patients) and monoamine oxidase B

inhibitors (61% of patients) being clearly the most common classes of these medications.

Efficacy and usability

The UPDRS section-II total scores for subjects with PD were similar at screening and at the

end of study (median score of 12.5 at both time points). 63 (36 PD patients, 5 DBS and 22 con-

trol subjects) subjects out of 65 responded to the usability questions, however some subjects

did not answer to all questions. Usability assessments can be seen from Table 2, and despite

there are things (e.g., charging of devices and recording current bad moment) to improve, the

overall usability enabled the wanted study conduct in practice.

Symptom recording

Of the 42 subjects with PD, 40 (95.2%) recorded a total of 7590 symptoms (motor, non-motor

or other) in the application (Table 3). A total of 39 subjects (92.9%) reported 4492 motor

symptoms (pre-defined or other), of which the most reported were rigidity (1513 events in 36
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Table 1. Demographics of the study population.

Variable Subjects with PD (N = 42) Control subjects (N = 23)

PD patient (N = 36) DBS PD
(N = 6)

Gender

Male n 15 (41.7%) 1 (16.7%) 11 (47.8%)

Female n 21 (58.3%) 5 (83.3%) 12 (52.2%)

Age (years) range 43–75 48–69 46–74

mean (SD) 63.4 (7.8) 61.3 (8.3) 64.9 (7.9)

median 63.0 63.5 67.0

Weight (kg) range 46.2–124.4 53.5–136.0 54.0–120.0

mean (SD) 79.72 (18.20) 91.07 (28.35) 81.98 (18.75)

median 75.70 85.75 82.40

Height (cm) range 152.0–190.5 162.0–177.0 154.0–185.0

mean (SD) 170.27 (11.04) 167.83 (5.64) 168.98 (8.53)

median 170.00 168.00 170.00

BMI (kg/m^2) range 17.4–46.3 20.4–47.1 20.7–40.1

mean (SD) 27.58 (6.23) 32.07 (8.85) 28.64 (5.85)

median 26.85 31.30 26.50

Variable Subjects with PD (N = 42)
PD patient (N = 36) DBS PD (N = 6)

Years since the symptoms started range 3–22 8–17

mean (SD) 10.7 (4.8) 12.3 (2.9)

median 11.0 12.5

Years since the diagnosis of PD range 0–18 5–17

mean (SD) 8.5 (4.7) 11.2 (4.0)

median 8.5 11.5

Years since levodopa treatment started range 0–13 3–17

mean (SD) 5.3 (3.5) 8.2 (4.8)

median 4.0 7.5

Years since the end-of-dose wearing off symptoms started range 0–7 2–6

mean (SD) 2.1 (1.9) 4.0 (1.9)

median 1.0 4.0

Number of daily levodopa doses range 4–12 5–7

mean (SD) 5.7 (1.9) 6.0 (1.0)

median 5.0 6.0

Total daily levodopa doses (mg) range 150–2275 250–700

mean (SD) 611.8 (343.7) 440.0 (171.0)

median 562.5 400.0

Hoehn and Yahr Stage

Stage 2.0 n (%) 8 (22.2) 2 (33.3)

Stage 2.5 n (%) 10 (27.8) 4 (66.7)

Stage 3.0 n (%) 18 (50.0) 0 (0.0)

UPDRS total scores at screening

I. Mentation, behavior and mood mean (SD) 1.8 (1.3) 1.2 (1.0)

II. Activities of daily living mean (SD) 12.2 (4.7) 10.8 (6.0)

III. Motor examination mean (SD) 25.4 (10.7) 14.0 (8.6)

IV. Complications of therapy mean (SD) 6.6 (2.7) 4.5 (2.7)

https://doi.org/10.1371/journal.pdig.0000225.t001
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subjects [85.7%]), slowness (1327 events in 37 subjects [88.1%]) and tremor (925 events in 30

subjects [71.4%]).

Non-motor symptoms (pre-defined or self-described) were reported at 1502 occasions by

35 subjects (83.3%). The most reported non-motor symptom was pain (893 events in 26 sub-

jects [61.9%]), followed by dizziness (182 events in 16 subjects [38.1%]), urinary dysfunction

(177 events in 10 subjects [23.8%]) and sleep disturbances (118 events in 20 subjects [47.6%]).

Linear models on spectral features see the signal

As a feasibility check, total aggregates of all data show partial separability of patients vs. con-

trols, based on the ratio of low vs. high (cut-off�5Hz) frequencies. Similar spectral patterns

also separate symptom periods from immediately adjacent non-symptomatic periods.

To get an idea of spectral effects of the disease, Fig 5 shows spectral differences between

patients and controls; z-scores are for block means of dB-scale spectra over all data (and there-

fore ignore annotations, and also patients as a replication unit). Z-score is calculated as
ðmean P� mean CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var P
n Pð Þþvar C

n C

p , where mean are means of log-amplitudes over the 21.8-minute blocks at the tar-

get frequency, for patients (P) and controls (C) respectively, var are variances, and n are num-

bers of blocks. Next, patients were separated from controls by using the x-channel spectrum.

The leave-one-out ROC is shown in Fig 6. Using all available pre-processed wearable data, a

promising (AUC = 0.895) classification to patients and controls could be observed, but without

annotations separating patients from controls is still incomplete.

With annotations and the factorial model described in the Methods section, one can char-

acterize symptom events of patients with spectral, temporal, and across-channel envelopes as

Table 2. Usability of wearables and mobile application.

PD patient

(n = 36)

DBS PD patient

(n = 6)

Control

(n = 23)

Question n (%) n (%) n (%)

Difficulty of wearing device entire day: very easy or easy 32/36 (88.9%) 4/5 (80.0%) 21/22 (95.5%)

Difficulty of charging device and phone: somewhat or

very difficult

13/36 (36.1%) 2/5 (40.0%) 7/22 (31.8%)

LEVODOPA reminders helpful? 26/35 (74.3%) 3/4 (75.0%) NA

Recording current bad moment difficulty: very easy or

easy

25/36 (69.4%) 4/5 (80.0%) NA

Recording previous bad moment difficulty: very easy or

easy

24/36 (66.7%) 4/5 (80.0%) NA

Learned more of condition with app? 29/36 (80.6%) 0/5 (0.0%) NA

https://doi.org/10.1371/journal.pdig.0000225.t002

Table 3. Event counts of PD symptoms reported in the mobile application and the relative amount of the subjects

who had reported that symptom type at least once.

PD patient (n = 36) DBS PD patient (n = 6)

Symptoms n (% out of total) n (% out of total)

Motor symptoms, pre-defined 4109 (97.2%) 243 (66.7%)

Non-motor symptoms, pre-defined 786 (80.6%) 33 (83.3%)

Other 2407 (66.7%) 12 (33.3%)

Other symptoms, re-classified motor symptoms1 140 (13.9%) -

Other symptoms, re-classified non-motor symptoms1 683 (27.8%) -

Notes: Grouped here with other symptoms1

https://doi.org/10.1371/journal.pdig.0000225.t003
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Fig 5. Temporally aggregated power spectra of device and g-aligned channels patients vs. controls.

https://doi.org/10.1371/journal.pdig.0000225.g005

Fig 6. Leave-one-out ROC curve (AUC = 0.895).

https://doi.org/10.1371/journal.pdig.0000225.g006
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shown in Fig 4. The top row is for tremor symptoms, the bottom row for the rest. The tremor

events have a rather striking spectral spike at around 5 Hz, and attenuation at lower frequen-

cies, while other symptoms just show an attenuation of low frequencies. Tremors are tempo-

rally more focused around the reported time. Channel responses show varying visibility, with

the derived virtual channels (g, dg, etc.) being not markedly worse or better than the physical

ones (x, y, z). Tremor is less visible on the x-channel because that channel is parallel to the

limb.

MJFFd analysis suggests the signal visibility depends on the movement

states

Effect of the drug state on symptoms can be seen in both observer and in accelerometer scores,

and with expected polarity, which means dyskinesia is amplified, and bradykinesia and tremor

attenuated by the levodopa treatment. We present the effects on bradykinetic accelerometer

scores in the Fig 7, the rest can be found in S1 Fig to S3 Fig.

In the figure, task types are depicted by acronyms (again, see S2 Fig for the complete list).

X-axis shows the difference from the drug state, and the y-axis the strength of the symptom

signal as seen by the linear spectral model. Of these, the effect of levodopa (x) is more mean-

ingful, because it shows the effect of a well-controlled manipulation in a constant movement

state. We see clear differences across tasks; especially ramu (repeated arm movement, undomi-

nant hand) and ftnu (finger to nose, undominant) are discriminative, also wlkgp (walking

through a narrow passage), wlkgc (walking while counting) and ntblt (assembling nuts and

bolts). Other symptom types show larger uncertainty in drug effects (S2 Fig and S3 Fig), but

notably, ramu and ftnu again show good discriminative ability for dyskinesias. Scales on the

axes are commensurable but otherwise artificial.

Fig 7. Drug effect on the symptom severity as predicted from the accelerometer data (x-axis), and relative

strength of the effect (y-axis at different tasks in MJFFd.

https://doi.org/10.1371/journal.pdig.0000225.g007
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We did a similar analysis for the observer scores; these are also available as S4 Fig to S6 Fig.

Modelling uncertainty there is higher, indicating more noise in observer scores compared to

the accelerometer. Partly due to noise, it is hard to say whether symptom visibility across tasks

is similar to that with the accelerometer, but discrepancies would not be unexpected, because

obviously visual vs. kinetic observability may vary across situations.

In conclusion, these results suggest that even simple linear models are capable of seeing

symptom signals from the accelerometer data, and that their capability is modulated by the

task, or movement state, of the subject.

VAE allows separation of movement states

The VAE was implemented using PyTorch. The encoder was a two layer fully connected neu-

ral network with node count of 400 and 20 for the first and second layer, a symmetric decoder

was used. From the MJFFd we chose a subset of right-handed patients who wore the acceler-

ometer on their right hand. The VAE was trained using 10 second blocks of three channel

accelerometer data.

We used the 20-dimensional latent representation of a given block of accelerometer data

for a downstream classification task to different movement tasks (S2 Fig). Classification was

done by using a fully connected neural network with two hidden layers with 50 nodes each

from the scikit-learn library. Classification accuracy was determined by fivefold cross valida-

tion. Further validation was done by training the VAE model on patients from one test site

and performing cross validated classification using patients from another test site. As a second

test, we trained the VAE using our own patient accelerometer data and performed the predic-

tion task on the MJFFd population.

When training the model on MJFFd, we obtain a mean classification accuracy of 0.48 for

the eighteen different tasks. When the model is trained on our own accelerometer data and

tested on MJFF data we obtain a mean classification accuracy of 0.41. Random guessing would

give a rough baseline accuracy of approximately 1/18 (~6%). A notable feature of the confusion

matrix (Fig 8) is the grouping of confusion among similar tasks: the upper left corner indicates

confusion among walking tasks, and the lower right corner shows confusion among fine

motor tasks. Since some of the tasks are performed unilaterally, we can also see confusion

among tasks where the non-performing hand is approximately stationary: sitting, finger to

nose left, and repeated arm movement left.

In both cases, the predictor differentiated the tasks well above random guessing without

any tuning, implying the VAE learned meaningful movement-state representations.

Discussion

In this pilot study, we used a consumer-grade accelerometer and mobile application to moni-

tor symptoms of Parkinson’s disease (PD). From the analysis of Levodopa Response Study

data (MJFFd), we also found that movement state can affect the visibility of PD symptoms.

Additionally, we discovered that unsupervised variational autoencoders (VAEs) can make it

relatively easy to estimate movement states.

The design and usability of the data collection arrangements in this study by using a com-

mercial wearable device and a bespoke mobile application were successful. 80.0% or more of

subjects in each cohort assessed wearing the device an entire day or night as very easy or easy.

Also, the reminders were considered helpful and the symptom recording easy/very easy by a

clear majority of PD patients. The media age of study participants was as low as 63 (43–75)

years, which can be seen as a limitation of this study. However, we did not notice any age-

related usability difficulties which suggests older people are also able to use wearable and
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mobile devices. Also, the upper limit of age in the inclusion criteria was set to 75 years. Retro-

spectively this should have been set higher as we did receive interest from persons older than

80 years during the recruitment.

A total of 7590 symptom events were self-reported by patients, showing the potential for

data collection. Just the symptom reports alone, or their number, may be useful, at least longi-

tudinally. As an example, patients with DBS in our study reported remarkably few non-motor

symptoms. From the point of view of generalizability, however, it is good to understand that

events will not be evenly distributed across patients, so the effective number of patients

becomes smaller than the number of study participants. Combining the event reports with the

accelerometer data from a commercially available device opens possibilities for understanding

symptoms and improving medication and overall care.

Data collection for supervised models requires a ground truth for the existence and severity

of symptoms. Such studies, as opposed to monitoring when models already exist, require stric-

ter design and can be more cumbersome for patients. The temporal accuracy of symptom dia-

ries, for example, is critical, as is the accuracy of symptom evaluations. The latter is known to

be difficult, even with videotaping and training [8,22].

If the goal is to contrast symptomatic and asymptomatic periods in the training of symp-

tom-detection models, it is not clear what the control should be. For example, movements do

Fig 8. A confusion matrix for predictions of tasks using representations from a VAE trained on MJFFd. Data from

Boston site was used for training, and data from NYC site for testing.

https://doi.org/10.1371/journal.pdig.0000225.g008
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not usually occur during sleep, and because we do not want the models to predict arousal

states, sleep should be detected and removed, or arousal should be controlled in the models.

But sleep is not well-defined, arousal not easy to measure, and the question about other poten-

tial confounders arises, including technical ones, such as willingness to wear the device, and

data quality more generally. Using unsupervised models to pre-select movement states does

not solve these issues.

The modeling pipeline for symptom quantification was relatively simple, power spectra of

blocks followed by linear models or ´generalized linear models (GLM). Symptom types had

characteristic spectral shapes that mostly replicated across data sets, and, from our own data

collection, rather broad temporal envelopes, indicating either long-duration symptoms or low

temporal resolution of symptom diaries. No clear advantage was shown by any of the acceler-

ometer channels, including our derived virtual channels (except for low tremor amplitude in

the direction of the limb). We did not attempt discriminative symptom detection.

In our analyses, data apart from VAEs was in blocks of 21.8 minutes as it was assessed to be

compatible with the time scale of the symptom diaries. When symptoms are dynamically

detected from raw data, much shorter intervals would be beneficial. Spectral resolution would

be sufficient even in ten-second blocks, the temporal scale used with the VAE.

As seen by the simple models from accelerometer signal, MJFF Levodopa study shows

attenuation of bradykinetic and amplification of dyskinetic signals in some fine-motor tasks,

and bradykinesia also while walking. These and other movement states present in the MJFF

experiment are detectable from unsupervised representations created with VAEs, and detec-

tion ability of the models remains across data sets. Further study is needed on combining

movement-state detection by VAEs with actual symptom detection.

The primary objective of the study was the identification of OFF symptoms, as perceived by

the subject, with reasonable accuracy from real-world data collected with commercially avail-

able Garmin Vivosmart 4 wearable device and a mobile application. With motor OFF symp-

toms, our findings are promising. Obviously more research with larger populations and

improved methods in collecting the data is needed. While we did not demonstrate the poten-

tial of the full approach, we believe that with more patient data, one can train models to detect

useful movement states, and then use supervised models or other ways to assess symptoms

from chosen periods. This could provide some benefits of controlled measurement without its

costs, inconvenience, and compliance issues. Model training may require a data collection

plan that has both uncontrolled and controlled parts. Generalizability to clinical populations

requires a larger patient sample than what was available in this research [23].

Supporting information

S1 Fig. 80% confidence intervals of the coefficients of the models predicting observer

scores from accelerometer data.

(TIF)

S2 Fig. Drug effect on the tremor symptom severity as predicted from the accelerometer

data (x-axis), and relative strength of the effect (y-axis) at different tasks of the MJFF data.

(TIF)

S3 Fig. Drug effect on the dyskinesia symptom severity as predicted from the accelerome-

ter data (x-axis), and relative strength of the effect (y-axis) at different tasks of the MJFF

data.

(TIF)
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S4 Fig. Drug effect on the bradykinesia symptom severity as seen by observers (x-axis), and

relative strength of the effect (y-axis) at different tasks of the MJFF data.

(TIF)

S5 Fig. Drug effect on the dyskinesia symptom severity as seen by observers (x-axis), and

relative strength of the effect (y-axis) at different tasks of the MJFF data.

(TIF)

S6 Fig. Drug effect on the tremor symptom severity as seen by observers (x-axis), and rela-

tive strength of the effect (y-axis) at different tasks of the MJFF data.

(TIF)
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konen, Mikko Kärppä, Filip Scheperjans, Teppo Huttunen, Tapani Keränen.

Methodology: Sammeli Liikkanen, Tapani Keränen.

Project administration: Sammeli Liikkanen, Valtteri Kaasinen.

Resources: Sammeli Liikkanen, Mikko Kärppä, Filip Scheperjans.
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