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Abstract

Precise and timely referral for lung transplantation is critical for the survival of cystic fibrosis

patients with terminal illness. While machine learning (ML) models have been shown to

achieve significant improvement in prognostic accuracy over current referral guidelines, the

external validity of these models and their resulting referral policies has not been fully inves-

tigated. Here, we studied the external validity of machine learning-based prognostic models

using annual follow-up data from the UK and Canadian Cystic Fibrosis Registries. Using a

state-of-the-art automated ML framework, we derived a model for predicting poor clinical

outcomes in patients enrolled in the UK registry, and conducted external validation of the

derived model using the Canadian Cystic Fibrosis Registry. In particular, we studied the

effect of (1) natural variations in patient characteristics across populations and (2) differ-

ences in clinical practice on the external validity of ML-based prognostic scores. Overall,

decrease in prognostic accuracy on the external validation set (AUCROC: 0.88, 95% CI

0.88-0.88) was observed compared to the internal validation accuracy (AUCROC: 0.91,

95% CI 0.90-0.92). Based on our ML model, analysis on feature contributions and risk strata

revealed that, while external validation of ML models exhibited high precision on average,

both factors (1) and (2) can undermine the external validity of ML models in patient sub-

groups with moderate risk for poor outcomes. A significant boost in prognostic power (F1

score) from 0.33 (95% CI 0.31-0.35) to 0.45 (95% CI 0.45-0.45) was observed in external

validation when variations in these subgroups were accounted in our model. Our study

highlighted the significance of external validation of ML models for cystic fibrosis prognosti-

cation. The uncovered insights on key risk factors and patient subgroups can be used to

guide the cross-population adaptation of ML-based models and inspire new research on

applying transfer learning methods for fine-tuning ML models to cope with regional varia-

tions in clinical care.
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Author summary

Cystic fibrosis is a genetic disease that affects multiple organs of a patient. End-stage cystic

fibrosis patients usually have advanced lung diseases, and lung transplantation is the last

treatment for them. Due to the scarcity of lung resources, precise and timely selection of

high-risk patients for lung transplant referral is of paramount importance. Machine learn-

ing models were proved to be of potential in improving prognostic accuracy over existing

clinical guidelines. However, the development of trustworthy machine learning models

relies on a large volume of data. As a rare disease, cystic fibrosis only affects a small sub-

population around the world. Reuse of well-established machine learning model devel-

oped from a large population is desirable. While prognostic scores of machine learning

models were demonstrated effective within the same population, their external validity

when applied to a demographically different patient cohort has not yet been fully

explored. In this paper, we evaluated the external validity of a machine learning model

with registry data of cystic fibrosis patients from UK and Canada and identified several

risk factors and patient subgroups affected by variations across the two countries. These

insights can be used to guide the cross-population adaptation of machine learning models

in practice.

Introduction

Respiratory failure caused by advanced lung disease is the most common cause of death

among cystic fibrosis (CF) patients [1, 2]. Lung transplantation (LTx) is the last resort treat-

ment for end-stage CF patients [3]. However, due to the scarcity of donor organs, LTx is only

assigned to patients most at risk with a priority scheme (waitlist) that is based on estimates of

individual patient prognosis. Current guidelines of LTx referral typically rely on the forced

expiratory volume in one second (FEV1) metric, which is a measurement of lung function and

a strong predictor of CF patients’ mortality [4], as a surrogate for patient risk and a predictor

of individual patient outcomes. In the new era of personalized medicine [5], it has been shown

that more precise estimates of individual patient risk can be obtained using machine learning-

based prognostic models that incorporate multiple predictors beyond the FEV1 biomarker [6].

Such prognostic models can achieve higher accuracy in identifying appropriate patients for

LTx referral as opposed to the FEV1-based baseline.

Despite their potential for improving prognostic accuracy, training ML models typically

requires a large number of data points—the scarcity of data in rare diseases such as CF could

compromise the accuracy and validity of such models. Since CF only affects a small sub-popu-

lation worldwide, with varying incidence rates across different regions [7], the lack of data

may hinder the development of robust and reliable ML models in areas with smaller popula-

tions or lower CF incidence rates [8]. Moreover, the development of ML-based prognostic tool

for CF can be a high-cost process that is not affordable in all countries where the disease is

prevalent. This is because maintaining annual disease registries that collect data on individual

patients requires an elaborate organizational effort and may entail a high cost per patient.

Instead of rebuilding ML-based prognostic models for each distinct patient population,

models could be reused across populations. The extent to which it is appropriate to apply a

model developed using data from one population in a demographically different population

depends on whether the differences between the two populations undermine the model’s prog-

nostic accuracy. Models that exhibit high accuracy when tested on an external data set are

likely to generalize well across populations, which could enable transferring models developed
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in countries with well-maintained disease registries to other countries and populations where

data are too scarce to develop a population-specific model.

In this paper, we investigate the external validity of ML-based prognostic models using

annual follow-up data from the UK and Canadian Cystic Fibrosis Registries. In particular, we

study the effect of (1) natural variations in patient characteristics across populations and (2)

differences in clinical practice on the prognostic accuracy of ML-based prognostic scores. We

use a state-of-the-art automated ML (AutoML) framework AutoPrognosis [9–12] to derive a

prognostic score using data from the UK registry and validate the derived score using the

Canadian registry data. We tested the applicability of the resulting ML-based LTx referral pol-

icy in different populations within the external validation data set and identified risk factors

and patient subgroups associated with cross-population variations.

Materials and methods

Data and experiment setup

Annual follow-up data between 2008 and 2018 from the UK and Canadian Cystic Fibrosis

Registries were used for analysis in the experiments. Both databases provided longitudinal

records of CF patients, including variables on demographics, genetic mutation types,

microbiology infection, medication and CF-related treatments, hospitalization, survival

and transplantation status. The composite endpoint of LTx or death in a three-year horizon

was considered as the target of prediction in order to identify appropriate candidates for

LTx referral. A prognostic model was built by AutoPrognosis for this task, and the LTx

referral was determined based on the model output and a cutoff threshold developed on

training samples. The AutoPrognosis model and associated referral policy were derived on

the larger UK CF population. The diagnostic accuracy of AutoPrognosis-constructed

model was evaluated against two FEV1-based baselines on the internal validation cohort

from UK with ten-fold cross-validation. For the test of cross-population applicability, in

each fold, the model was also evaluated on the external validation cohort from the Canadian

CF dataset.

For the three-year outcome prediction task, the latest available records in 2014 covering

over 99% of registered CF patients with annual reviews in the UK and Canada were used for

experiments. The list of 53 commonly available variables considered in this study can be found

in Table 1. The definition of mutation category [13] considered in this study was provided in

S1 Appendix. The FEV1% predicted values from the past three years before 2014 were included

to provide additional information on lung function evolution of CF patients. Pediatric patients

were excluded from this study due to low incidence rate of adverse endpoints (LTx or death)

considered in this study [14, 15]. The complete sample selection criteria were illustrated in

S1 Fig.

After removal of pediatric patients and samples with missing values, records of 4,610 and

2,008 patients from the UK and Canadian CF datasets were involved in this study, respectively.

Ranges of considered feature variables in the two selected CF cohorts from UK and Canada

were presented in Table 2. Additionally, hospitalized patients in the considered UK CF cohort

in 2014 had a median hospital stay of 15 days with the interquartile range (IQR) of 8–32 days.

Similar length of hospital stay was observed in the Canadian cohort with the median of 14

(IQR: 7–29) days. For patients received IV antibiotics treatment at home, the total days of

treatment had a median of 22 (IQR 14–40) days in the UK while the median in Canada was 20

(IQR: 14–35) days. Further details of the two datasets can be found in the corresponding

annual reports [14, 15] from the UK and Canadian CF Registries.
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Population-level variations

Both UK and Canada are developed countries with publicly funded healthcare systems, which

potentially implied good generalizability of ML models across their populations. However,

while the nation-wide lung allocation scheme [16] prioritized organ offers to high-risk

patients, in the UK, the final decision of LTx were mostly at the discretion of individual trans-

plant center [17]. In Canada, without a national policy of lung resource allocation, offers of

donor lungs were majorly determined by a status system based on the subjective clinical assess-

ment by transplant centers [18]. Thereby, variations in LTx practice among the two popula-

tions are inevitable, which would impair the cross-population applicability of ML models.

Further, we noted two major variations in patients’ health status and LTx access that may

impact the external validity of ML models developed from UK CF population when applied in

Canada.

As reported in Table 2, the two studied cohorts had close variable ranges in demographics

and lung functionality. The length of hospital stay and intravenous (IV) antibiotic treatment at

home was similar for relevant patients in these two populations as well. However, the inci-

dence rates of oxygenation, home IV antibiotic treatment, and hospitalization of Canadian CF

patients were significantly lower compared to those in the UK, which could be a reflection of

the approximate ten-year advantage in predicted survival of Canadian CF patients over the

UK and other countries in 2014 [14, 15, 19, 20]. Such a gap in expected survival time was asso-

ciated with shifts in the mortality rate distribution over populations as demonstrated in S2 Fig,

which would impact the performance of AutoPrognosis-based policy on the external valida-

tion set.

Variation in LTx access was another important factor that impacted the applicability of

AutoPrognosis-derived referral policy in the external Canadian CF cohort. Between 2008 and

2018, the UK had a median LTx per million population (PMP) of 2.90 with IQR between 1.60

and 3.08, while in Canada, the median LTx PMP was 6.49 (IQR: 5.44–8.10) [21]. The

Table 1. Common feature variables considered in the study.

Age Gender

Height Weight

BMI FEV1 (2014)

FEV1% (2014) FEV1% (2013)

FEV1% (2012) FEV1% (2011)

Aspergillus Burkholderia Cepacia

Methicillin-resistant Staphylococcus aureus (MRSA) Pseudomonas

Oxygen Therapy Home IV Antibiotics Days

Hospitalization Days Ivacaftor

HyperSaline Inhaled Colistin

Chronic Macrolide Cortico Oral

Cortico Inhaled Cortico Combo

Antifungals High-dose (HD) Ibuprofen

Allergic Bronchopulmonary Aspergillosis (ABPA) Hemoptysis

Pneumothorax Sinus Disease

Pancreatitis Intestinal Obstruction

Cancer Bone Fracture

Bone Loss Depression/Anxiety

Liver Cirrhosis Pancreatic insufficiency

Mutation Category {A, B, C, D, O} × {A, B, C, D, O}

https://doi.org/10.1371/journal.pdig.0000179.t001
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availability of lung resources was directly reflected in the LTx practice in these two countries.

Among the studied UK CF patients in 2014, only 1.69% received LTx between 2015 and 2017,

while 4.33% of the involved Canadian CF patients received LTx in the same period. Thereby,

the cutoff threshold determined on the UK cohort could be over stringent when applied to the

Canadian population.

Table 2. Major characteristics of the studied UK and Canadian CF cohorts in 2014. Binary variables were marked by � with occurrence and incidence rate reported.

Continuous variables were reported with median value and IQR. Variables with different mean values in these two populations were identified via two-sample t-test under

the p-value of 0.05 and were marked with †. Binary variables with a gap over 10% in incidence rate between the two populations were highlighted in bold.

Variable UK Canada p-value

Demographics Age 29.67 (14.42) 29.17 (15.18) 0.8091

Male� 2492 (54.06%) 1086 (54.08%) 0.9837

Female� 2118 (45.94%) 922 (45.92%) 0.9837

Height† 167.00 (14.00) 167.00 (13.53) 0.0437

Weight† 61.00 (17.60) 61.80 (17.31) 0.0059

BMI† 21.80 (4.44) 22.18 (4.33) 0.0000

FEV1%† 69.10 (37.06) 66.24 (34.03) 0.0001

Insufficiency Allele† 1.96 (0.06) 1.96 (0.07) 0.0000

Treatment Oxygen Therapy�† 353 (7.66%) 68 (3.39%) 0.0000

IV Antibiotic Home�† 1703 (36.94%) 344 (17.13%) 0.0000

Hospitalization�† 2127 (46.14%) 420 (20.92%) 0.0000

Ivacaftor�† 255 (5.53%) 51 (2.54%) 0.0000

HyperSaline�† 1452 (31.50%) 509 (25.35%) 0.0000

Inhaled Colistin�† 2595 (56.29%) 25 (1.25%) 0.0000

Chronic Macrolide�† 2588 (56.14%) 792 (39.44%) 0.0000

Cortico Oral�† 501 (10.87%) 123 (6.13%) 0.0000

Cortico Inhaled�† 581 (12.60%) 112 (5.58%) 0.0000

Cortico Combo�† 2115 (45.88%) 12 (0.60%) 0.0000

Antifungals�† 433 (9.39%) 7 (0.35%) 0.0000

HDI Buprofen�† 1 (0.02%) 5 (0.25%) 0.0047

Comorbidity Liver Cirrhosis� 328 (7.11%) 120 (5.98%) 0.0900

ABPA�† 679 (14.73%) 41 (2.04%) 0.0000

Hemoptysis�† 612 (13.28%) 18 (0.90%) 0.0000

Pneumothorax�† 39 (0.85%) 6 (0.30%) 0.0128

Sinus Disease�† 598 (12.97%) 463 (23.06%) 0.0000

Pancreatitis�† 45 (0.98%) 31 (1.54%) 0.0463

Intestinal Obstruction� 348 (7.55%) 127 (6.32%) 0.0761

Cancer�† 18 (0.39%) 23 (1.15%) 0.0003

Fracture� 35 (0.76%) 16 (0.80%) 0.8723

Bone Loss�† 1221 (26.49%) 122 (6.08%) 0.0000

Depression/Anxiety�† 298 (6.46%) 226 (11.25%) 0.0000

Genetics Mutation Category AB� 826 (17.92%) 351 (17.48%) 0.6688

Mutation Category BB�† 2416 (52.41%) 945 (47.06%) 0.0001

Mutation Category BC�† 526 (11.41%) 178 (8.86%) 0.0020

Mutation Category BO�† 354 (7.68%) 210 (10.46%) 0.0002

Microbiology Burkholderia Cepacia� 223 (4.84%) 86 (4.28%) 0.3257

Pseudomonas�† 3305 (71.69%) 1103 (54.93%) 0.0000

MRSA�† 155 (3.36%) 163 (8.12%) 0.0000

Aspergillus�† 979 (21.24%) 551 (27.44%) 0.0000

https://doi.org/10.1371/journal.pdig.0000179.t002
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Methods

For the prognostic task considered in this paper, AutoPrognosis 2.0 [11, 12] is used to search

for the optimal prognostic model as an ensemble of multiple ML pipelines as illustrated in the

overview in Fig 1. AutoPrognosis 2.0 is an enhanced version of the original AutoPrognosis

approach proposed in [10]. For the sake of convenience, we omit the version number and refer

to AutoPrognosis 2.0 with AutoPrognosis in the following discussion. AutoPrognosis is to

date the only open-source AutoML framework tailored for healthcare studies [12] and is vali-

dated to outperform existing AutoML methods [10, 11]. The end-to-end design and rich func-

tionalities of the AutoPrognosis framework make it a convenient tool for clinical model

Fig 1. An overview of the AutoPrognosis framework. AutoPrognosis is a highly extensible AutoML framework built upon a plugin system. Based on

the configured plugins for data imputation, preprocessing and classification, AutoPrognosis constructs an ML pipeline ensemble from the most

performant pipelines developed with base classification plugins. (a) An example ensemble composed of three ML pipelines was illustrated to

demonstrate the AutoML workflow of AutoPrognosis. All pipelines include four major procedures: imputation, preprocessing, classification, and

calibration. In pipeline 1, the multivariate imputation by chained equations (MICE) plugin is applied for missing data imputation. The imputed data are

then passed to fast ICA to create a compact, low-dimension data representation. The random forest classifier is used for the prediction task and its

outputs are calibrated with a sigmoid function. Pipeline 2 and 3 are constructed in the same manner for the end-to-end prediction. AutoPrognosis first

searches for the most performant ML pipelines among all possible combination of configured plugins. The selected pipelines are then combined as an

ensemble model to achieve the best prediction performance. Two types of ensemble structure, i.e., stacked and weighted ensembles, are considered in

AutoPrognosis, and Bayesian optimization is used to tune ensemble parameters for each structure. The optimal ensemble is selected based on the

configured performance metric. Various explainer plugins of AutoPrognosis can be enabled for the ensemble to provide explanations along with the

classification outputs. Detailed description of the algorithm can be found in [10–12]. (b) In this study, the UK CF dataset was provided as input to

AutoPrognosis to search the optimal ML model for the composite endpoint prognostic task. The constructed ML model was a weighted ensemble of

three ML pipelines. As illustrated in the calibration curves, the random forest pipelines tended to underestimate (above the dashed line) the risk level of

high-risk patients. While the logistic regression pipeline was able to identify high-risk CF patients, its prognostic output was significantly higher than

observed risks and would lead to many false alarms. AutoPrognosis was able to take advantage of all ML pipelines and create an optimal ensemble with

the best prognostic accuracy.

https://doi.org/10.1371/journal.pdig.0000179.g001

PLOS DIGITAL HEALTH External validity of machine learning-based prognostic scores for cystic fibrosis

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000179 January 12, 2023 6 / 17

https://doi.org/10.1371/journal.pdig.0000179.g001
https://doi.org/10.1371/journal.pdig.0000179


development and allow healthcare professionals to take advantage of state-of-the-art AutoML

algorithms in their research without the requirement of extensive knowledge on machine

learning [11].

Given an input dataset, AutoPrognosis automatically constructs ML pipelines as combina-

tions of data imputation, preprocessing, and prediction modules in an end-to-end fashion.

After calibration of the output function, these ML pipelines are combined as an ensemble for

the best prognostic performance. Existing AutoML search algorithms including the default

Bayesian optimization method can be utilized by AutoPrognosis to determine the optimal

ensemble and ML pipeline configurations [11]. Further technical details can be found in the

open-source software package [12]. In complementary to the development of optimal prog-

nostic models, AutoPrognosis also provides clinical investigation functionalities to help clini-

cians further understand the derived prognostic model via explanation and cohort analysis

modules. These inspection tools are specifically tailored for healthcare studies and enable clini-

cians to gain better understanding on feature variables and their impact on ML model predic-

tions [11].

In this study, there was no missingness in both the UK and Canadian CF datasets after the

sample selection and data preparation procedures described in S1 Fig and S1 Appendix. Thus,

the data imputation plugin of AutoPrognosis was kept as the default imputation by chained

equations (ICE) approach and was not actually applied to the input data. For the preprocessing

step, normal, uniform, min-max, and identical transforms were configured for feature scaling,

while the variance threshold, principal component analysis (PCA), and fast independent com-

ponent analysis (ICA) plugins were used for dimensionality reduction. Base models of neural

network, XGBoost, random forest, and logistic regression were configured as classification

plugins for the pipeline construction. The optimal ensemble was selected via ten steps of

Bayesian optimization.

Statistical analysis

For the evaluation of prognostic accuracy, precision, recall, F1, area under the curve of

receiver-operating characteristic (AUCROC), and area under the curve of precision-recall

(AUCPRC) about the composite endpoint of LTx or death were used as performance metrics.

Given a diagnostic model for adverse endpoint estimation, the precision score, i.e., positive

predictive value (PPV), is calculated as the proportion of true high-risk patients experienced

adverse outcomes among all patients identified as high-risk by the model. The recall score, i.e.,

true positive rate (TPR), is the fraction of true high-risk patients that were correctly identified

by the model. The F1 score is the harmonic mean of precision and recall scores, which reflects

the overall diagnostic power of a model. In this paper, all of these performance metrics were

evaluated via endpoint-stratified ten-fold cross-validation on the source dataset of UK CF

cohort for the 95% confidence interval (CI). The Canadian CF cohort was used for external

validation in each fold.

Ethics statement

This study was conducted within the scope of ‘Developing a prognostic score for people with

cystic fibrosis using machine learning’ which was approved by the Cambridge Psychology

Research Ethics Committee of the University of Cambridge (Application No. PRE.2021.034).

Our access to registry data of CF patients from the UK Cystic Fibrosis Registry and Cystic

Fibrosis Canada was approved by the Registry Research Committee or Registry Review Panel

comprised of CF clinicians and researchers. The registry data collected by the UK Cystic Fibro-

sis Registry included demographic, clinical treatment and outcome information from patients
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that provided written consents. The data from Cystic Fibrosis Canada were collected with con-

sent from individual patient through accredited CF clinics in Canada.

Results

Prognostic power of LTx referral policies

The prognostic performance of the model constructed by AutoPrognosis was evaluated against

the baseline LTx referral policy of FEV1� 30% predicted introduced in [6] and the policy

derived from a recent guideline [22] proposed by the Cystic Fibrosis Foundation. This guide-

line recommended LTx referral for adult patients in the following cases: 1) FEV1 below 50%

predicted with rapid decline in the past 12 months; 2) FEV1 below 40% predicted with markers

of reduced survival time [22–24]; or 3) FEV1 below 30% predicted. Detailed criteria in the

adapted referral policy were provided in S1 Appendix. The AutoPrognosis policy was devel-

oped from the prognostic model constructed by AutoPrognosis by applying a cutoff threshold

to the model output. Patients with predicted risk score above the threshold were recom-

mended for LTx referral. The cutoff threshold was chosen to maximize the F1 score on train-

ing samples of AutoPrognosis. In the meantime, comparison of the two populations from the

UK and Canada showed variations in LTx rates in certain patient subgroups as reported in S1

Table. Two additional selection criteria (FEV1� 30% predicted or FEV1� 40% predicted with

an absolute decrease of ΔFEV1� 10% over the past three years) were introduced based on this

observation to construct an augmented AutoPrognosis policy.

As shown in Table 3, the ML-based diagnostic model constructed via AutoPrognosis had

much better accuracy over the baseline referral policy of FEV1� 30% on UK cohort, which

was consistent with the result reported in [6]. The referral policy derived from the 2019 guide-

line [22] was capable to select most of the high-risk patients and had a higher TPR of 0.63 com-

pared to AutoPrognosis. However, there were many false alarms in its high-risk patient

selection given the lowest PPV score of 0.31 on the internal validation set. Due to the limited

lung resources in the UK [21], high PPV score is essential for any practical LTx referral poli-

cies. The AutoPrognosis policy was validated to be optimal on the studied UK CF cohort with

the highest F1 score of 0.49. In addition to the population-level performance metrics, the

Table 3. Diagnostic performance of four LTx referral policies. The policy of FEV1� 30% predicted and a FEV1-based policy derived from a 2019 guideline were used as

two baselines. Apart from the original AutoPrognosis policy developed on the studied UK CF cohort, an augmented AutoPrognosis policy with two additional criteria

developed from the Canadian CF data was included in the evaluation as well. As a balanced measurement of prognostic accuracy, a high F1 score comes with high PPV

and TPR scores. Decrease in either PPV or TPR score leads to a lower F1 score. Desirable LTx referral policies ought to have a high F1 score. All evaluation results were

reported with 95% CI.

Prognostic performance FEV1� 30% Guideline 2019 [22] AutoPrognosis

Original Augmented

Internal validation (UK cohort) PPV 0.46±0.04 0.31±0.02 0.50±0.05 0.37±0.02

TPR 0.39±0.05 0.63±0.05 0.49±0.05 0.61±0.05

F1 0.42±0.04 0.41±0.02 0.49±0.04 0.46±0.02

AUCROC – – 0.91±0.01 –

AUCPRC – – 0.49±0.05 –

External validation (Canadian cohort) PPV 0.47±0.00 0.35±0.00 0.52±0.02 0.42±0.00

TPR 0.31±0.00 0.53±0.00 0.24±0.02 0.49±0.00

F1 0.37±0.00 0.43±0.00 0.33±0.02 0.45±0.00

AUCROC – – 0.88±0.00 –

AUCPRC – – 0.40±0.00 –

https://doi.org/10.1371/journal.pdig.0000179.t003
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calibration curves of the ML model constructed by AutoPrognosis on the UK and Canadian

CF cohorts were provided in S3 Fig to illustrate its accuracy for patients with different risk

levels.

The cross-population applicability of these LTx referral policies was validated on the exter-

nal Canadian CF cohort. Benefited from the widely accepted referral criteria, the guideline-

derived policy had similar PPV and TPR scores in both internal and external validations,

which was within expectation. Meanwhile, despite the high PPV score of 0.52, majority (76%

according to the TPR of 0.24) of high-risk patients in Canadian CF population was overlooked

by the original AutoPrognosis policy, which led to the lowest TPR score among all evaluated

policies. Similar failure in external validity of AutoPrognosis-based policy was observed even

when only the single endpoint of death (without LTx) was considered as presented in S1

Appendix. Such failure can be overcame via accounting for the variations in LTx practice

existed in certain subgroups of CF patients. According to Table 3, with merely two additional

selection criteria, the augmented AutoPrognosis policy achieved better prognostic accuracy

(F1) than the 2019 guideline on the external validation set from Canadian CF population. The

TPR score of the original AutoPrognosis policy was boosted from 0.24 to 0.49 without much

loss in PPV. In comparison, although the 2019 guideline had a high TPR score of 0.53, the

lower PPV of 0.35 showed that there were 65% of false alarms in its LTx referral.

Timeliness of LTx referral policies

As a complement to the diagnostic accuracy (TPR) reported in Table 3, the timely LTx referral

of high-risk CF patients was further evaluated as shown in Table 4. The LTx referral for a high-

risk patient with adverse future endpoint in a three-year horizon was considered in time.

Timely LTx referral of high-risk CF patients is especially important when there are sufficient

donor lung resources available. Failure in identifying these patients leads to delayed referrals

which may leave significant impact on their life expectancy. While the AutoPrognosis-based

policy was as effective as the 2019 guideline in issuing timely LTx recommendation on the UK

cohort, it resulted in a significantly larger number of delayed LTx referrals compared to the

FEV1-based baselines when applied to the Canadian CF population, which is unacceptable in

practical applications. In contrast, with two additional referral criteria for two subgroups of

moderate- and high-risk patients, the augmented AutoPrognosis policy was as timely as the

2019 guideline while having a significantly higher precision (PPV) score for both cohorts as

shown in Table 3.

Risk factors across populations

To better understand the decreased accuracy of AutoPrognosis-constructed model on the

external validation set from Canada, the prognostic power of individual variable was compared

Table 4. Timeliness of referral policies in target domain. There were 307 and 158 patients died or received LTx during 2015 and 2017 in the considered UK and Cana-

dian CF cohorts, respectively. A timely referral policy shall suggest LTx referral for these patients based on the annual follow-up information in 2014. The referral result of

the baselines and AutoPrognosis model developed on the source data (UK cohort) were evaluated on such subgroup of CF patients. For each policy applied to this sub-

group, patients predicted as low-risk were counted under the column of delayed. Patients predicted to be high-risk were counted in the column of timely. The numbers

were reported with 95% CI via models obtained from stratified ten-fold cross-validation on the UK CF dataset.

Referral policy UK cohort Canadian cohort

Delayed Timely Delayed Timely

FEV1� 30% 187.00±0.00 120.00±0.00 109.00±0.00 49.00±0.00

Guideline 2019 114.00±0.00 193.00±0.00 74.00±0.00 84.00±0.00

AutoPrognosis Original 134.10±6.77 172.90±6.77 120.10±3.39 37.90±3.39

Augmented 103.70±4.66 203.30±4.66 80.30±0.62 77.70±0.62

https://doi.org/10.1371/journal.pdig.0000179.t004
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in the two studied populations. The comparison was conducted for both the composite end-

point and the single endpoint of death to differentiate the impact of LTx access and shift in

mortality rate across populations. The result was illustrated in Fig 2. Variables close to or

above the dashed line were shared risk factors across populations since they achieved equal or

higher accuracy as in the UK population when applied to the Canadian CF cohort.

According to [23], FEV1 score (current and in the past three years), body mass index

(BMI), hospitalization, IV antibiotics treatment, oxygen therapy, oral corticosteroids are

strong predictors for death or LTx in a three-year horizon. Further, underweight (low BMI) is

an important factor that affects the listing and ranking of patients waiting for LTx [26–29].

The variable of weight plays a similar role as BMI in the prognostic task since the height of

adult patients were generally stable. Pseudomonus infection is correlated to CF patients’ mor-

tality [30, 31], and long-term macrolide therapy is in widespread use for CF patients, particu-

larly for the treatment of chronic pseudomonus infection [32]. In the meantime, long-term

oral corticosteroids are usually used for CF patients with advanced lung diseases or allergic

bronchopulmonary aspergillosis (ABPA) [33]. While ABPA only causes death to CF patients

in some rare cases [34], advanced lung diseases and the associated risk of respiratory failure

are closely related to the adverse endpoints considered in this study. The bone mineral loss,

i.e., osteopenia (mild) or osteoporosis (severe), is suffered by certain subgroups of CF patients

and is associated with the severity of inflammatory lung damage, which would ultimately lead

to death or LTx referral, of these patients [35, 36].

As shown in Fig 2(a), most of the risk factors discussed above were shared by the UK and

Canadian CF populations, which suggested good generalizability of the AutoPrognosis model

Fig 2. Diagnostic accuracy of individual variables in the UK and Canadian CF cohorts. The ML model constructed by AutoPrognosis was trained

with one single feature variable as input iteratively on the UK cohort. The AUCROC score was used as the proxy of diagnostic accuracy and was

measured with ten-fold cross-validation. The Canadian CF cohort was used as the external validation set in each fold. Feature variables were colored

based on their category, and their locations were determined by the average AUCROC score achieved by their associated models on the two

populations. Feature variables with AUCROC score above 0.6 [25] were considered to be predictive of high-risk patients and were annotated with their

variable names.

https://doi.org/10.1371/journal.pdig.0000179.g002
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developed on UK CF population when applied to the Canadian CF cohort. However, variables

located under the dashed line, i.e., hospital stay, oxygenation, treatment of IV antibiotics at

home, medication of corticosteroids and, the indicator of bone loss, were less predictive of

LTx or death in the Canadian CF cohort. The reason behind this was twofold. On one hand,

along with the better survival expectation [14, 15], patients in Canada had much lower inci-

dence rates of bone loss, hospitalization, IV antibiotics treatment and oxygenation as reported

in Table 2 and S6 Fig. Such distributional shifts in population capped the upper bounds in pre-

dictive accuracy of these variables. On the other hand, the higher donor lung availability [21,

37] potentially allowed less severe CF patients in Canada to receive LTx, which resulted in the

lower relevance between LTx and these markers of severe lung diseases. For instance, the risk

factor of hospital stay got closer to the dashed line when only the single endpoint of death was

considered in Fig 2(b), which indicated nearly equal predictive power in the two populations

compared to Fig 2(a).

As a direct measure of lung function, FEV1 is the most important risk factor for both the

composite endpoint and the single endpoint of death. However, Fig 2(b) showed that it had

lower diagnostic accuracy on death when evaluated on the external validation set from Cana-

dian CF population. This was linked to the shifts in mortality distribution across the two popu-

lations. As presented in S2 Fig, for Canadian CF patients with FEV1 below 30% predicted, the

observed mortality risk was significantly lower than those in the UK. While in Fig 2(a) with

LTx considered in the endpoint, the drop in predictive accuracy of FEV1 was compensated

due to higher LTx rate for this subgroup of patients in Canada according to S1 Table.

Model applicability in subgroups

We further examined the prognostic errors of the AutoPrognosis-constructed model in several

subgroups of Canadian CF patients. For this evaluation, three risk groups (low-, moderate-,

and high-risk) were defined based on the incidence rate intervals in R ¼
f½0; 0:1Þ; ½0:1; 0:5Þ; ½0:5; 1:0�g for adverse outcomes in the future. High-risk patients were con-

sidered to have higher chances of death or LTx while low-risk patients were unlikely to receive

LTx referral. The risk score from AutoPrognosis output was translated into risk group labels

based on the risk group cutoffs, which were searched via the observed risk among patients

with similar predicted risk scores. For illustrative purpose, the stratification result in the UK

CF cohort was plotted in S4 Fig.

The subgroup-level applicability of the AutoPrognosis model developed on the UK CF pop-

ulation was evaluated via its prognostic consistency with a separate model constructed by

AutoPrognosis on the Canadian cohort, as shown in Fig 3. The risk group division developed

from UK cohort was applicable to 86.3% of studied CF patients from Canada, especially for the

patients with very high or low risks.

In area 1 of mismatch, adverse future outcomes were observed for 22.9% patients, indicat-

ing moderate-risk as the correct label. Further, there was a subset of patients with FEV1 below

40% predicted and an absolute decline of ΔFEV1� 10% predicted over the past three years,

which showed a clear sign of lung function deterioration. Patients with such patterns in Can-

ada belonged to the moderate-risk stratum in general as illustrated in S5 Fig. We noted that

over 95% of patients in this area had FEV1 above 30% predicted. Since FEV1 below 30% pre-

dicted was reported to be a major risk factor for LTx referral in the UK [6], the low-risk stra-

tum wrongly assigned to this area could be potentially explained with the higher FEV1 level of

patients in this area.

Regarding the area 2 of mismatch, although only 30.7% of associated patients were oxygen-

ated, this area had an observed risk of adverse future outcome at 68.0% and was qualified for
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the high-risk stratum. Canadian CF patients in this area had a median FEV1 of 29.8% pre-

dicted. Risk stratum mismatches in this area were majorly caused by 48.0% of the patients with

FEV1 above 30% predicted and 34.7% of patients with FEV1 below 30% but received no sup-

plement oxygen.

Fig 3. Mismatches in risk stratification between the UK and Canadian CF cohorts. Two prognostic models were constructed by AutoPrognosis

separately on the UK and Canadian CF populations. Canadian CF patients with future outcomes of survival, death and LTx were annotated with circles,

crosses, and triangles, respectively. Their locations were determined by the output of the two AutoPrognosis models. Very high-risk patients with FEV1

below 30% predicted and supplement oxygenation were highlighted with cyan circles. The two AutoPrognosis models were in agreement of risk

stratum for most of these very high-risk patients. Mismatches happened in two subgroups of patients with underestimated risk levels. The first

subgroup consisted of moderate-risk patients that were identified as low-risk by the AutoPrognosis model developed on the UK population and was

referred to as mismatch 1. The latter subgroup consisted of high-risk patients that fell into the moderate-risk stratum in the UK population. We referred

to the corresponding area as mismatch 2.

https://doi.org/10.1371/journal.pdig.0000179.g003
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Augmented policy for the external validation set

Despite low TPR score of the original AutoPrognosis policy on the external validation set from

Canada, the comparison of key risk factors and risk strata of these two populations showed

that many risk factors were shared by the UK and Canadian CF populations and the AutoP-

rognosis model developed on UK CF cohort was applicable to most CF patients in Canada

except for a few subgroups affected by the cross-region variations. In the following discussion,

we showed that the adaptation with two additional criteria can significantly improve the diag-

nostic accuracy of the AutoPrognosis-based policy on the external validation set from Canada.

As discussed above, in the Canadian CF cohort, patients with FEV1 below 30% predicted or

FEV1 below 40% predicted plus an absolute decline of ΔFEV1� 10% in the past three years

had a higher risk stratification compared to those in the UK and should be recommended for

LTx referral when there were sufficient lung resources available. This can be verified with the

distribution of patients in these two subgroups as provided in S5 Fig. Additionally, statistics in

S1 Table showed that Canadian CF patients in these two specific subgroups had significantly

higher rates of LTx compared to the UK cohort. Although S2 Fig showed that there existed a

distribution shift in mortality rate for patients with FEV1 below 30% predicted in these two

populations, such shift was mostly compensated by the higher LTx rate in Canada, and no rele-

vant overestimation in risk stratum was observed in Fig 3.

To account for the above-mentioned variation across populations, we proposed an aug-

mented version of the AutoPrognosis policy by incorporating prediction of LTx referral for

these two subgroups as additional criteria. According to the prognostic accuracy reported in

Table 3, the augmented AutoPrognosis policy achieved an improved prognostic performance

with PPV of 0.42 and TPR of 0.49 on the external validation set from Canadian CF population.

The augmented policy outperformed the consensus LTx referral guideline [22] with a compa-

rable TPR score and a significantly higher PPV score, which led to the best diagnostic accuracy

(F1 of 0.45) over the original AutoPrognosis policy and two FEV1-based baselines.

Discussion

The clinical practice of LTx for CF patients is hugely affected by guidelines. Thereby, LTx pre-

diction can be heavily biased in favor of current guidelines that focus on FEV1. As illustrated

in Fig 2, predictive power of individual risk factor may differ when different targets (LTx or

death v.s. death without LTx) were considered. In this paper, we focused on the evaluation of

external validity of ML models in a different population and analyzed the effect of various fac-

tors on the cross-population generalizability of ML models for LTx referral. The impact of

guideline-induced biases is out of the scope of our paper, and we leave it as a future direction

of our study.

Our study is based on the data obtained from the UK and Canadian Cystic Fibrosis Regis-

tries. While we have worked hard to remove possible biases from data processing procedures,

the results and conclusion in this paper may be affected by potential errors in records in these

two datasets. In the meantime, mismatches in variable definition across healthcare systems are

usually inevitable. Their impact on prognostic biases of an ML model applied across popula-

tions could be entangled with other major factors like patient health status and organ availabil-

ity analyzed in this manuscript. Risk factor analysis in this study shows that variables affected

by such type of mismatches have little impact on the external validity of ML models in risk

prognostication for CF patients. The impact attribution of different sources of prognostic

biases across populations is an important topic, and we consider it as another possible direc-

tion of our future work.
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Conclusion

To validate the cross-population applicability of ML-based prognostic models for poor clinical

outcomes of CF patients, we conducted a study on external validity of ML models and their

derived LTx referral policies based on annual follow-up data from the UK and Canadian Cystic

Fibrosis Registries. The impact of LTx access and distribution shifts in patients’ health status

on underlying risk factors and risk stratification was evaluated via the state-of-the-art AutoML

framework AutoPrognosis. FEV1 was verified to be the most significant risk factor for adverse

outcome diagnostic of CF patients. Two FEV1-defined subgroups of patients were identified to

be hugely affected by the cross-population variations in the external validation set from Can-

ada. Further analysis showed that appropriate consideration of these variation-associated sub-

groups helped to the adaptation of ML models in a different population. Our experiments

highlighted the importance of external validation of ML models for CF outcome diagnostic.

The uncovered insights on external validity can be used to guide the real-world adaptation of

the high-precision ML models on different populations, and inspires new research on applying

modern transfer learning methods for fine-tuning models in environments with significant

variation in care and patient demographics.
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