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Abstract

The brain’s memory system is extraordinarily complex, evidenced by the multitude of neu-

rons involved and the intricate electrochemical activities within them, as well as the complex

interactions among neurons. Memory research spans various levels, from cellular and

molecular to cognitive behavioral studies, each with its own focus, making it challenging to

fully describe the memory mechanism. Many details of how biological neuronal networks

encode, store, and retrieve information remain unknown. In this study, we model biological

neuronal networks as active directed graphs, where each node is self-adaptive and relies on

local information for decision-making. To explore how these networks implement memory

mechanisms, we propose a parallel distributed information access algorithm based on the

node scale of the active directed graph. Here, subgraphs are seen as the physical realiza-

tion of the information stored in the active directed graph. Unlike traditional algorithms with

global perspectives, our algorithm emphasizes global node collaboration in resource utiliza-

tion through local perspectives. While it may not achieve the global optimum like a global-

view algorithm, it offers superior robustness, concurrency, decentralization, and biological

feasibility. We also tested network capacity, fault tolerance, and robustness, finding that the

algorithm performs better in sparser network structures.

Author summary

In this paper, we delve into how biological neuronal networks encode, store, and retrieve

information, aiming to model the brain’s memory system and propose practical algo-

rithms for memory characterization and information storage at the algorithmic level. To

characterize memory effectively, we must first identify its physical counterpart. We

abstract the biological neuron network as an active directed graph, which serves as the

framework for memory storage. According to the theory of memory engram and synaptic

plasticity, memory is the co-activation of specific neuronal clusters and synaptic sets,

which is reflected in the directed graph as the co-activation of specific point sets and edge

sets. These activated point sets and edge sets are actually a connected subgraph of the

whole active directed graph. Therefore, we propose to consider this connected subgraph
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as the physical counterpart of memory. We design a parallel distributed access algorithm

based on the scale of the directed graph to explore whether this assumption meets the

properties of stability, distinguishability, less interference, and incrementalism exhibited

by memory. Our approach offers a more biologically realistic network model, focusing on

the impact of connections between neurons and structure on memory rather than numer-

ical characterization.

1 Introduction

Memory is one of the brain’s most crucial and intricate cognitive abilities. It serves as the foun-

dation for information processing and supports the development of higher cognitive functions

such as thinking, learning, and decision-making. Neurobiology researchers have investigated

memory mechanisms at various levels, ranging from molecular and cellular to brain slice and

whole-animal studies [1]. Neuroimaging techniques like functional magnetic resonance imag-

ing (fMRI) and positron emission tomography (PET) enable the exploration of the brain’s

functional connectivity and neural activity patterns during memory tasks. Meanwhile, the pro-

cesses of memory encoding, storage, and retrieval are studied using neurophysiological tech-

niques such as single-cell recordings and electroencephalography (EEG), along with

behavioral cognitive tasks. However, each level of memory research has its focus and limita-

tions, providing only a partial account of the brain’s memory mechanisms. The brain continu-

ously receives sensory information from the environment, encoding it into various variables.

These variables are transmitted through neural circuits that encode and store key information.

Despite advancements, many details of how biological neuronal networks encode, store, and

retrieve information remain unknown. Data from cognitive-behavioral tests, neuroimaging,

and electrophysiological experiments offer valuable but limited insights.

To draw an analogy between the human brain’s memory system and a computer storage

system, the implementation process of computational storage is well-understood, proceeding

clearly from the bottom to the top. However, much remains unknown about the implementa-

tion process of brain memory. For example, consider a database management system (DBMS),

which is a widely used data management and storage system found in almost every computer.

Through a DBMS, users can easily access and update data. Take the classic relational database

MySQL as an example. When using MySQL to store information, the DBMS records the data

in the form of a B+ tree into a file. In this process, the DBMS first receives SQL statements

from the user for storing information. These statements are parsed, optimized, and executed

by the database engine. The data storage process involves creating and writing files. Using the

Linux file system as an example, the operating system first finds an unallocated inode and rec-

ords basic attributes such as file size, owner, and creation time in it. It then finds a number of

unallocated data blocks based on the data size and writes the binary encoded data. When data

needs to be written to the disk, the operating system passes the logical address of the data to

the disk. The disk’s control circuitry translates the logical address into a physical address,

determining which track and sector the data to be read is on. It then moves the head to the cor-

responding track, rotates the target sector under the head, and uses an electric current to gen-

erate a strong magnetic field at the head to change the polarity of the magnetic particles

passing over the disk, enabling the writing of data. As illustrated in Fig 1, from encoding to

storing data, the details of each of these processing steps and the interface between them are

well-defined. While it is clear that a human memory system similar to a DBMS can perform

the same task, based on our current knowledge of neuroscience, psychology, and
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computational modeling, we are unable to provide a logically consistent explanation of the

complete mechanism of memory implementation as detailed as that of a DBMS, from the bot-

tom layer of impulse issuance to the top layer of memory function realization.

Directed graphs, a classical data structure in computer science, are often employed to depict

connections between information. Biological neuronal networks are readily depicted as

directed graphs of elements and their connections [2, 3]. In these networks, neurons receive

and integrate stimulus signals from upstream neurons via dendrites and the cell body, subse-

quently transmitting stimulus signals to downstream neurons via axons. Neurons can also self-

regulate through synaptic plasticity mechanisms such as Spike-Timing-Dependent Plasticity

(STDP) [4]. STDP is a physiological process that adjusts the strength of neural connections in

the brain, based on the relative timing of action potential inputs and outputs. If an input signal

from a neuron consistently occurs just before the neuron’s output signal, the connection

becomes stronger. Conversely, if the input signal occurs after the neuron’s output, the connec-

tion weakens. It’s evident that there is no super-manager with a global vision controlling the

behavior of every neuron or node. A single biological neuron is a complex computational unit

involving numerous state variables, such as nerve voltage [5], synaptic activation [6], synaptic

strength [7], synaptic connectivity [8], phosphorylation level [9], mRNA concentration [10],

transcriptional regulation [11], and neuromodulatory signals [12]. In biological neural net-

works, different subtypes of neurons exhibit distinct morphological and electrophysiological

characteristics. Therefore, neurons cannot be simplified into nodes that are merely represented

numerically in a directed graph. Static directed graphs only fulfill real-time recording func-

tions, with the nodes usually only characterizing values. It is more accurate to abstract biologi-

cal neuronal networks as active directed graphs. Viewing the active directed graph from a

multi-agent system perspective, each node can be seen as an independent and fully autono-

mous agent [13]. Each node’s scope is limited to its upstream and downstream connected

nodes, with information passed between neighboring nodes via directed edges. Every decision

made by a node is based on local information and can be continuously learned and optimized.

The intrinsic behavior of each node and its external upstream and downstream connections

are distinct, resulting in the entire graph displaying rich and complex dynamical behavior.

This raises a question for memory studies: how do active directed graphs with neurobiological

constraints such as local horizons, autonomous mobility, and self-adaptation store, encode,

and retrieve information?

In neurobiology, a memory is any change in the activity or connectivity of the nervous sys-

tem triggered by a stimulus or a brain state that lasts longer than the triggering event. It has

Fig 1. Using database management systems as an analogy, the brain’s memory system lacks such a clear and complete chain of signal processing.

https://doi.org/10.1371/journal.pcsy.0000019.g001
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been proposed that memories are encoded in an engram complex, yet many questions remain

unanswered. These include how information is stored in the imprint, how the structure of the

imprint impacts memory quality, strength, and precision, and how multiple imprints interact

with each other [14]. Viewed from the perspective of an active directed graph, such a graph

consists of numerous nodes and directed edges. The permutations of these nodes and edges

can generate a vast array of connected subgraphs. If these connected subgraphs are seen as a

resource, they can be understood to characterize states where nodes are active or related to

each other. Consequently, the number of states that can be represented by the entire directed

graph is substantial, allowing it to store or remember a significant amount of content. In an

active directed graph where each node exhibits autonomous and independent behavior, mak-

ing decisions based solely on locally obtained information, the shape and number of functional

connected subgraphs are unpredictable. Furthermore, if we introduce the possibility of incre-

mental, adaptive learning at each node, the diversity and number of functional subgraphs in

an active directed graph become even greater. To explore the brain’s memory mechanisms

within an active directed graph framework, it is essential to establish neurobiologically consis-

tent behavioral guidelines for the nodes.

How to form functional connected subgraphs, consolidate them, effectively utilize limited

node and path resources, and ensure compatibility or minimal interference among multiple

functional connected subgraphs are key topics investigated in this paper. The primary focus is

on realizing storage in a directed graph where every node is dynamic, and how to freely form,

consolidate, and activate functional connected subgraphs. The main contribution of this paper

is the proposal of a parallel distributed storage algorithm based on node scales in an active

directed graph. Unlike traditional algorithms that rely on a global field of view, the design chal-

lenge here is that nodes must achieve global collaboration on resource usage through their

very limited local field of view. While this approach may not always achieve the global opti-

mum like algorithms with a global field of view, it offers superior robustness, concurrency,

decentralization, and biological feasibility.

Directed graphs have various application modes in storage, and one common mode is the

abstract modeling of neuronal networks. One such example is the Hopfield network proposed

by John Hopfield in 1982 [15]. It is a fully connected binary recurrent neural network that

characterizes the network state by an energy function. Each iteration of the network proceeds

towards energy reduction until it reaches a steady state, also known as an attractor. The num-

ber of attractors represents the network capacity, which is approximately 0.14N, where N rep-

resents the number of nodes in the network. When implementing the associative memory

function, the Hopfield network enables complete content retrieval by only part of the sample.

However, the capacity of the Hopfield network increases linearly with its network size, making

it difficult to preserve too many samples. In 2016, Krotov and Hopfield introduced the discrete

modern Hopfield network [16], which allows network capacity to be extended by changing the

network energy function and the update rule, but at the corresponding cost of requiring a

large number of hidden layer nodes. Demircigil et al. [17] further extended the energy function

by introducing exponential interaction functions, increasing the network capacity. In 2021,

Ramsauer, Hubert, et al. [18] extended the energy function of modern Hopfield networks

from discrete to continuous states while maintaining exponential storage capacity and fast

convergence. Hopfield networks, as classical self-associative computational models, enable

mapping between vectors of the same dimension. The bidirectional associative memory

(BAM) model proposed by Bart Kosko in 1988 [19] can realize both self-association and het-

ero-association, i.e., mapping between vectors of different dimensions. The model comprises

two layers of neurons connected by a weight matrix, which encodes the mapping relationships

of all samples. Activating any layer of neurons and iterating through the network results in a
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correlated output in the neuron on the other layer. In 2021, Bart Kosko [20] introduced a bidi-

rectional backpropagation algorithm in BAM to update matrix parameters dynamically. The

original structure was also extended to have any number of hidden layers. The network capac-

ity is increased. In this mode, directed graphs simulate the structure of biological neuron net-

works, and the network structure is often fixed, such as fully connected or hierarchically

connected. The impact of structural parameters such as connectivity, clustering coefficient,

and average path length on network performance is not considered. The implementation of

the storage function relies more on the weight parameters and update rules of the network,

which remains the weight-centric theory. Moreover, all storage contents need to be deter-

mined in advance, and the weights are calculated and written at once, making them hard to

update incrementally or partially. The local damage to the network will affect the global net-

work, and the scalability of the network scale is not good. In recent research, Wei et al. [21]

abstracted biological neural networks into active directed graphs, exploring how directed

graphs at the cellular level can encode, store, and retrieve information. This research,

grounded in neurobiology, integrates theories from graph theory, multi-agent systems, and

parallel distributed processing. It emulates the connectivity characteristics of biological cortical

neural networks to construct directed graphs and designs a node-adaptive connectivity learn-

ing algorithm under the premise of finite resource competition. Wei et al.’s work provides an

innovative and feasible perspective for exploring the memory mechanisms of the brain. Senk

et al. [22] proposed a set of standardized connectivity concepts for neural network modeling,

including deterministic and probabilistic connection rules, considering the impact of node dis-

tribution in metric space on connection probability. They found that many published neural

network models have unclear or incomplete descriptions of connectivity. By introducing uni-

fied graphical symbols and descriptive language, Senk et al. aim to improve the clarity and

reproducibility of model descriptions, promoting the shareability and reusability of computa-

tional neuroscience research. These advancements not only help us understand the working

principles of biological neural networks more deeply but also provide a solid theoretical foun-

dation for the design and optimization of neural networks.

In contrast to artificial neural networks that rely on fixed connection patterns, weight

parameters, and update rules, or static directed graphs that primarily function for fact record-

ing, this paper presents a method for storing information in a directed network in a distributed

manner. This approach leverages the autonomous and dynamic behaviors of numerous nodes

in the network, such as resource acquisition and competition. The information content is dif-

ferentiated based on the distinct combinations of nodes and edges. Subgraphs serve as the

information storage carriers without relying on super nodes. Additionally, there is no need for

a global view. Information is stored through nodes and edges’ local, limited, and adaptive

dynamic behaviors. This subgraph-based computational storage model ensures that the stored

information remains stable, distinguishable, and fault-tolerant. It also enables incremental

storage of information. The performance of this storage method relies on the network’s struc-

tural characteristics and the nodes’ adaptive learning algorithm.

The brain’s neuronal network is considered the physiological basis for information process-

ing and mental representation. The brain is an extremely complex information processing sys-

tem in terms of both function and structure, making the understanding of its memory

mechanisms a longstanding challenge in memory research. Computational models of memory

based on artificial neural networks are an approximate tool to enhance our understanding of

the human brain’s memory system. Despite significant progress in neural networks, these

models do not closely resemble neurobiological aspects. To further comprehend the brain’s

information processing mechanisms, it is necessary to establish neural network models that

are more consistent with biological realities based on neurobiological evidence.
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Recent studies on engram cell ensembles have shown that the memory trace for a given

memory is not necessarily located in a single anatomical location but is distributed across mul-

tiple locations connected by specific memory patterns, forming a memory engram. According

to the engram hypothesis, memory information is believed to be stored in the network formed

by these neurons. If we attempt to understand this from the perspective of directed graphs,

neurons are represented as nodes, and synapses between neurons are represented as directed

edges. Thus, a memory engram is a connected subgraph formed by activated nodes, with dif-

ferent connected subgraphs representing different memory contents.

In this paper, we abstract the brain’s neuronal network into a directed graph and explore

how active directed graphs with neurobiological constraints (such as local vision, autonomous

mobility, and adaptability) store, encode, and retrieve information. A memory model based on

directed graphs is an appropriate modeling method for cortical neuronal networks, exploring

the memory mechanisms at the level of cortical neuronal networks from the perspective of

directed graphs.

2 Materials and methods

2.1 Subgraph-based storage implementation

Let G = (V, E) be a directed graph, where V denotes the set of nodes and E denotes the set of

edges. If Gsg = (Vsg, Esg) is a subgraph of G, then it follows that Vsg⊆ V and Esg⊆ E, denoted as

Gsg⊆ G. In a subgraph-based storage implementation, information is recorded in the form of

a series of active nodes and interconnected pathways between them, i.e., a subgraph in the net-

work. For instance, consider the message to be stored as: “While observing a red apple on a

tree, I also saw a chirping robin.” In this case, nodes representing semantic elements like red,

circle, branch, and chirping are activated simultaneously and propagate stimulus along the

directed edges in the network. These nodes are referred to as the initial nodes of this sample.

During the stimulus propagation process, the initial nodes activate some otherwise inactive

nodes, called communication nodes, which are crucial for establishing the pathways. Not all

nodes are directly connected by edges in non-fully connected networks, so communication

nodes serve as bridges to establish pathways between the initial nodes. These pathways repre-

sent associations between semantic elements, such as recalling a robin when seeing an apple

again. This occurs when the initial node representing the apple is activated, and the stimulus is

passed along the stored pathway in the network, finally activating the node representing the

robin. This implementation draws inspiration from cognitive psychology studies on long-term

memory [23, 24].

However, the initial idea is insufficient and requires the design of specific implementation

details. For example, a node may only characterize a fundamental physical feature, necessitat-

ing multiple nodes to represent a concept like an apple. The initial node may activate some

communication nodes, which may activate others. Fig 2A shows 30 randomly selected nodes

as initial nodes in a directed network. Fig 2B shows a stable subgraph obtained by propagating

the stimulus of these 30 initial nodes through the network with continuous iterations.

Another factor that makes subgraphs suitable for information storage is the vast number of

potential subgraphs present in the network. Given m = |E|, there can be up to 2m subgraphs in

graph G. Thus, using subgraphs as information storage carriers is a promising idea. The chal-

lenge lies in ensuring that the subgraphs do not interfere with or confuse each other, effectively

utilizing the node and edge resources of the entire directed graph, enabling incremental stor-

age, reducing unfair resource occupation due to varying sample upload orders, and sharing

resources among multiple samples. These technical aspects need to be solved by the parallel

distributed network adaptive learning algorithm.
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2.2 Subgraph generation, storage, and retrieval

The storage and retrieval of samples are processes of the initial nodes propagating the stimulus

in the network and eventually forming a stable subgraph. Assuming the stimulus propagation

time between nodes is constant. The subgraph eventually reaches a stable state through itera-

tions. The formal definition of a stable subgraph is as follows: let Vt represent the set of all

active nodes in the network at time t. There exists a minimum time t0 such that Vt0 6¼ Vt0 � 1

and Vt0 ¼ Vt0þk for any positive integer k. At this point, the network is considered to be in a

stable state at time t0, and the subgraph comprising all active nodes and edges is the stable sub-

graph. There are two primary concerns: first, how the subgraph is recorded in the network,

and second, what rules nodes use for stimulus propagation. Section 2.2.1 describes the record-

ing of subgraphs, while sections 2.2.2 to 2.2.4 outline the stimulus propagation rules. Section

2.2.5 presents the specific procedure for sample storage and retrieval.

2.2.1 The node internal index table records the local upstream and downstream connec-

tivity traces. The storage of subgraph structures involves recording the connectivity paths

between active nodes, which can only be accomplished by the nodes themselves based on their

local perspectives. This necessitates that active nodes individually record activation informa-

tion both upstream and downstream of themselves. Let the node be vi, where i is the index of

the node. Define the activation trace of node vi as a path fragment consisting of the active fan-

in nodes and active fan-out nodes of node vi. Storing the activation traces of all active nodes

during this sample storage process will completes the subgraph storage.

In this paper, we store node activation traces by introducing an index table in each node, a

data structure with small capacity, easy access, and simple updating. Fig 3 shows the structure

of the index table, which contains two columns: the first for active fan-in nodes and the second

for active fan-out nodes. Fig 3A shows that node vb’s index table contains no content before

storing the samples. Once a sample is stored, its corresponding activation trace is saved in its

index table. As shown in Fig 3B, during sample retrieval, if node vb receives the same or similar

Fig 2. A sample can be stored as a subgraph in a directed graph. (a) Random activation of 30 nodes in the network. (b) Activated nodes propagate

stimulus in the network to form a subgraph.

https://doi.org/10.1371/journal.pcsy.0000019.g002
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input as the recorded activation traces, it generates the corresponding output based on the his-

torical records in the index table.

Defining an index table inside each node that records upstream and downstream active

path pairing relationships may appear straightforward and crude, but it is also biologically fea-

sible. Biological neurons have dendrites that receive inputs from multiple directions and axo-

nal that transmit outputs in different directions, creating a many-to-many connection. Actual

physical signaling between upstream and downstream neurons relies on synapses, regulated

by combinations of diverse neurotransmitters and ion pumps. These mechanisms precisely

control the direction and intensity of positive and negative charge flow. Additionally, differ-

ences in synapse location, such as being distal or proximal to the axonal, on dendrites or

axons, or on the main pathway or terminal, can precisely control the activation and deactiva-

tion of specific action potential transmission pathways. In conclusion, this highly precise and

diverse molecular-level and subcellular-level modulation and their combinations equip biolog-

ical neurons with various pathway control mechanisms at the microcircuit level [25, 26]. As a

result, a biological neuron can achieve diverse pathway control of signaling within its small

neighborhood, relying on a complex set of electrochemical processes [27]. This has inspired

the design of directed graph nodes’ internal behavior, allowing them to function like network

routers capable of differentially leading fan-outs based on fan-in variations. An index table

with limited storage space is a simple, functional equivalent implementation.

2.2.2 Intra-node stimulus propagation algorithm. The creation of subgraphs depends

on the propagation of stimulus between nodes. Stimulus propagation consists of two aspects:

node activation rules, i.e., how nodes are activated, and stimulus propagation rules, i.e.,

Fig 3. How to record activation traces within a single node. (a) After storing a sample, node vb’s index table adds an activation trace. (b) When node

vb receives the same or similar input again, it reuses the previously recorded activation traces.

https://doi.org/10.1371/journal.pcsy.0000019.g003
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determining the downstream nodes to which the stimulus is propagated. In this paper, the

node activation rule employed is a fixed-probability activation model, where a node will be

activated with a fixed probability upon receiving input. The node becomes active and begins

delivering stimulus to downstream nodes if successfully activated. Two types of stimulus prop-

agation rules are used in this paper: the first reuses similar historical activation traces, and the

second employs a weighted random selection algorithm.

The specific process of stimulus propagation among nodes is as follows: each resting state

node has a fixed probability, H, of being activated after receiving the stimulus. Once a node is

activated, if its index table is empty, it randomly selects several downstream nodes with equal

probability for stimulus delivery. If the index table is not empty, the similarity between the

input and each item in the node index table is calculated first. In this paper, the F1 score [28] is

used as a metric to evaluate the similarity of two node sequences. The F1 score is a statistical

measure of the accuracy of a binary classification model, which is the harmonic mean of preci-

sion and recall. When comparing similarity, either one of the node sequences can be treated as

the predicted value and the other as the actual value, and the corresponding F1 score is calcu-

lated. Higher scores indicate greater similarity. The corresponding historical activation traces

are reused if the maximum similarity exceeds the threshold. Otherwise, a weighted random

selection algorithm is used to select downstream nodes for stimulus delivery.

Algorithm 1: NodeStimulusSpreading(va)
Data: Table[va]: va’s index table. currentIn[va]: Current input of va.

Threshold: Similarity threshold. H: Probability of being acti-
vated. G[va]: va’s adjacency table. eOutNum: The expected value
of output size. freq[vb]: The occurrence frequency of vb in the
index table of va.

Input: va: Current node
Output: aOut: The fan-out nodes of va
1 if randomValue(0, 1) > H then

/* Activation failed */
2 return NULL;
3 end
4 mxF1  0;
5 aOut  NULL;
6 for item in Table[va] do

/* Traverse the index table and find the item most similar to cur-
rentIn[va]; */

7 f1Score  CalculateF1Score(item.in, currentIn[va])
8 if f1Score > Threshold and mxF1 < f1Score then
9 mxF1  f1Score;
10 aOut  item.out;
11 end
12 end
13 if aOut 6¼ NULL then
14 return aOut;
15 end
16 for vb in G[va] do

/* Calculate the occurrence frequency of vb in the index table of
va */

17 freq[vb]  getFrequencyOfOccurrence(vb, Table[va]);
18 end

/* Weighted random selection algorithm */
19 aOut  randomChoose(G[va], freq, eOutNum);
20 return aOut;

The weighted random selection algorithm is based on the frequency of the downstream

node appearing in all active fan-out nodes in the current node index table. The higher the
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frequency of occurrence, the lower the chance of being selected. The introduction of this algo-

rithm allows each active node to distribute stimulus evenly, thus maximizing network resource

utilization. The algorithm pseudo-code is shown in Algorithm 1. The value of H affects the

subgraph size. The larger H is, the more nodes participate in subgraph formation and the bet-

ter the connectivity. However, the corresponding cost of network resources is also larger. In

this paper, H is set at 60% for testing.

2.2.3 Node resource grabbing rules. Nodes are considered limited resources in a directed

graph, adhering to the first-come, first-served preemption rule. Activating a node can be seen

as the occupation of a node resource. When performing stimulus propagation, nodes can

acquire the occupancy of downstream nodes to avoid passing stimulus to already occupied

nodes. If an active node does not successfully activate any downstream nodes, it returns to a

resting state. A change in the state of some active nodes may trigger a chain reaction that

causes more active nodes to become resting. This situation is called the avalanche effect.

As shown in Fig 4, at t0, node vb receives a stimulus from node va, then subsequently acti-

vated at t1. However, because node vc has been occupied, node vb cannot transmit the stimulus

to node vc, causing node vb to revert to the resting state at the t2 moment. At this point, node

va is not activating any nodes due to the change in the state of node vb. Therefore, at t3, node va
also becomes resting due to the avalanche effect.

2.2.4 Several problems are caused by insufficient resources in subgraph generation. As

the sample count grows, new subgraphs may face resource shortages, hindering storage. Insuf-

ficient network resources generally fall into four categories:

1. The node index table has a capacity limit. When the number of samples stored in the net-

work reaches a certain level, it becomes hard to store new samples.

Fig 4. Node resource-grabbing rules. (a) Node va propagates stimulus to node vb. (b) After node vb is activated, it finds that other nodes have occupied

node vc. (c) Node vb becomes a resting state as it cannot continue to propagate stimulus. (d) Node va becomes a resting state because it has not activated

any downstream nodes.

https://doi.org/10.1371/journal.pcsy.0000019.g004
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2. The network is poorly connected, and the stimulus propagation rule carries a certain level

of randomness, as well as the existence of the avalanche effect, which leads to an inability to

establish a pathway between the initial nodes.

3. The samples already stored in the network interfere with the samples currently about to be

stored. This is because nodes may reuse historical activation traces when they are activated.

Although this is an optimization strategy to increase network capacity, it somewhat affects

the storage of current samples.

4. Some active nodes take up too many node resources during the current activation, resulting

in no resources available for other nodes.

For the first case, the capacity of the index table can be defined as the maximum number of

output types that a node can store, as there may be many different inputs corresponding to the

same output. The capacity can also be expanded by reasonably discarding and merging the con-

tents of the index table. Specifically, when a node’s index table capacity reaches its upper limit,

the node will search for the two most similar activation traces to merge. The similarity here

refers to the similarity of the active fan-in nodes in the two activation traces, and merging refers

to taking the intersection of the active fan-out nodes of the two activation traces. If the differ-

ences between the activation traces are both large, the one with the lowest strength is discarded.

The strength here refers to the number of samples that the activation trace has been involved in

storing. The more involved, the higher the strength. By reasonably merging and discarding, it is

possible to increase network capacity as much as possible at the expense of certain recall accu-

racy and completeness. The pseudo-code of the algorithm is given by Algorithm 2.

Algorithm 2: ActivationTracesUpdating()
Data: activeNodes: active nodes set. Outputs[va]: A collection of dif-

ferent output in Table[va]. K: The upper limit of the output
type.

1 for va in activePoints do
2 Table[va][in[va]] = out[va];
3 if out[va] not in Output[va] then
4 Output[va].add(out[va]);
5 end
6 if Output[va].size() > K then

/* Find the two most similar outputs to merge */
7 out1, out2  findTwoMostSimilarOutput(Output[va]);
8 if out1 6¼ NULL and out2 6¼ NULL then
9 out3  merge(out1, out2);
10 Output[va].remove(out1);
11 Output[va].remove(out2);
12 Output[va].add(out3);

/* Change the output of all items whose output is out1 or out2
in Table[va] to out3 */

13 changeItemsInTable(Table[va], out1, out3);
14 changeItemsInTable(Table[va], out2, out3);
15 else

/* If not found, discard the output with the lowest strength */
16 out1  findLowestIntensityOutput(Table[va]);
17 Output[va].remove(out1);

/* Delete all items whose output is out1 */
18 changeItemsInTable(Table[va], out1, NULL);
19 end
20 end
21 end
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The second and third cases can be solved by introducing a re-pathfinding rule. The re-path-

finding rule allows the initial nodes to re-propagate the stimulus to find a path connecting

other initial nodes when it does not successfully activate any downstream node. For the fourth

case, the active node can release some occupied resources according to its situation. The

resource release algorithm is introduced here to solve this problem. When the number of failed

re-pathfindings of an initial node reaches a certain threshold, it will enter a dormant state,

indicating that it is currently unable to communicate with other nodes. The node in the dor-

mant state suspends pathfinding until the subgraph stabilizes. Active nodes will release some

nodes after the subgraph is stabilized to make resources available to dormant nodes. For exam-

ple, if an active node has three active fan-out nodes, it can actively release the occupation of

two of them. After releasing the redundant resources, the nodes in the dormant state will

resume pathfinding until the subgraph stabilizes again. If, after releasing the resources, the

dormant node is still unable to establish path connections to other active nodes, the network

connectivity is considered poor, or there is a conflict between the current sample and the sam-

ples already stored in the network. In this case, the subgraph can still be formed. However,

there will be some isolated nodes that cannot establish connections with other nodes, leading

to a decrease in the subgraph’s anti-interference ability and fault tolerance. The pseudo-code

of the resource release algorithm is given by Algorithm 3. Fig 5 shows the transition relation-

ship between the three node states.

Algorithm 3: ResourcesReleasing()
Data: dormantCnt: The number of nodes in dormant state. isDormant[va]:

Whether va is in dormant state. repathCnt[va]: Indicates the num-
ber of re-pathfinding.

Output: True: The resource is released successfully and needs to con-
tinue to iterate. False: No node resources can be released,
the iteration is complete.

Fig 5. Node state transition graph.

https://doi.org/10.1371/journal.pcsy.0000019.g005
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1 if dormantCnt > 0 then
2 isReleased  False

/* The resources will be released if the subgraph is stable and
several nodes are dormant. */

3 for va  0 to n do
4 if out degree of va > 1 then

/* Release redundant resources */
5 isReleased  releaseResources(va);
6 end
7 if isDormant[va] == True then
8 isDormant[va]  False;
9 dormantCnt  dormantCnt − 1;
10 repathCnt[va]  0;
11 end
12 end
13 return isReleased;
14 end
15 return False;

2.2.5 Sample storage and retrieval. The sample storage process consists of two stages: (1)

Stimulus propagation stage: the initial nodes propagate stimulus to other nodes along the

directed edges until a stable subgraph is formed. (2) Subgraph consolidation stage: All nodes

in the subgraph update their internal index tables, recording the activation traces. The corre-

sponding pseudo-code is given by Algorithm 4.

Algorithm 4: SubgraphGeneratingAndSaving(initialNodes)
Data: isActive[va]: whether va is activated. isInitialNode[va]:

Whether va is a initial node. changed: Whether the network has
iterated to a stable state.

Input: initialNodes
1 dormantCnt  0;
2 for va in initialNodes do
3 isActive[va]  True;
4 isInitialNode[va]  True;
5 end
6 while True do
7 changed  False;
8 for va  0 to n do

/* va receives stimulus from upstream nodes */
9 receiveStimulus(va);
10 end
11 for va  0 to n do
12 if isDormant[va] == True then
13 continue;
14 end

/* va delivers stimulus to downstream nodes */
15 NodeStimulusSpreading(va);
16 end

/* The network is not stable, continue to iterate */
17 if changed == True then
18 continue;
19 end

/* The network is stable and releases resources */
20 if ResourcesReleasing() == False then
21 break;
22 end
23 end
24 ActivationTracesUpdating();
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Stimulus propagation stage: Fig 6 demonstrates a complete process of generating a stable

subgraph through continuous iteration of the initial nodes. At the time t0, the initial nodes are

activated, and downstream nodes are chosen for stimulus propagation according to the

weighted random selection algorithm. The subsequent t1 and t2 moments represent the contin-

uous stimulus propagation in the network. At the time t3, since downstream nodes vb and vc of

node vh have been occupied by other nodes, node vh cannot perform stimulus transfer. There-

fore, according to the node resource-grabbing rules, node vh transitions from the active state

to the resting state. At the time t4, downstream node vh, excited by node vj, reverts to a resting

state. At this point, node vj does not activate any nodes, and due to the avalanche effect, its

state also becomes a resting state. After the end of time t4, node vd will no longer propagate

stimulus. However, as the initial node, it will follow the re-pathfinding rules, searching for a

new path and attempting to participate in the subgraph formation. When re-pathfinding

reaches a certain number of attempts, the node will enter a dormant state. Here, it is assumed

that node vd has entered a dormant state and will halt pathfinding until the subgraph is stable.

It can be observed that at time t4, the subgraph is already stable since there will be no change

in node states. At this point, it is necessary for other active nodes in the network to release

redundant resources, providing node vd the opportunity to re-engage in the subgraph forma-

tion. At the time t5, node va, which originally occupied both node ve and node vg resources,

can choose to release the occupation of either of the two nodes. Assuming that node ve is

released, node ve will become resting, and the stimulus from node ve to node vb will also vanish.

However, because node vb is an initial node, its state will not change. After the resource is

released, node vd resumes pathfinding and node vj is activated at time t6. At the time t7, node

vh is activated by node vj, and the stimulus is passed to the initial node vb, forming a path. At

this moment, the connected subgraph between active nodes becomes stable, no dormant

nodes are present in the network, and the stimulus propagation stage concludes.

Subgraph Consolidation Stage: The primary task of this stage is to store a stable subgraph

structure in the network. When the subgraph achieves a stable state, each active node will have

corresponding active fan-in and active fan-out nodes, which are activation traces. Storing the

subgraph is completed by updating the activation trace of each node in the node’s internal

index table. The pseudo-code of the index table update algorithm is provided by Algorithm 2,

and the pseudo-code of subgraph generation and preservation is given by Algorithm 4.

The process of sample retrieval closely resembles that of sample storage. However, the sam-

ple retrieval process is simpler, only including the stimulus propagation stage. During the

stimulus propagation stage, it will not be activated when a node receives a stimulus transfer

from an upstream node and cannot find a similar entry in its internal index table. The initial

nodes will not enter the dormant state, and no nodes will release excessively occupied

resources. In summary, the sample retrieval algorithm will not cause any changes to the exist-

ing network. However, it will only perform stimulus propagation based on the activation traces

stored in the internal index table of the node. Since the sample retrieval algorithm process is

very similar to the storage algorithm, only the specified part mentioned above needs to be

omitted. Therefore, no separate pseudo-code is provided here.

3 Results

The experiment is primarily divided into four aspects:

1. Capacity testing: This aims to investigate the number of samples the network can stably

store and the factors influencing network capacity.
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Fig 6. Example of a dynamic process for directed graph stimulus propagation. (a) t0: Initial nodes {va,vb,vc,vd} are activated, which performs stimulus

propagation according to a weighted random selection algorithm. (b) t1: {ve,vf,vg,vi,vj} becomes active after receiving stimulus from the initial nodes. (c)

t2: {vh,vk} becomes active after receiving stimulus from active nodes. (d) t3: The downstream nodes {vb,vc} of vh are all occupied, so stimulus cannot be

propagated. vh becomes resting again. (e) t4: After vh becomes resting state, according to the avalanche effect, vj also becomes resting state. (f) t5: The

subgraph iterates to a steady state. Start to release resources, and node va releases the occupancy of ve. (g) t6: After the resources are released, the

dormant node vd restarts pathfinding and successfully activates vj. (h) t7: Node vh is successfully activated after receiving the stimulus from vj and

passing the stimulus to vb. The subgraph is iterated to a stable state.

https://doi.org/10.1371/journal.pcsy.0000019.g006
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2. Fault tolerance testing: This mainly explores the effect of sample retrieval when the input is

incomplete or has noise.

3. Robustness testing: This mainly explores the effect of sample retrieval when some nodes or

edges are damaged.

4. Performance testing on different classical network structures: This mainly explores the

algorithm’s performance on various classic network structures.

The network used in the experiment is ER random graphs [29]. This classic random net-

work model, proposed by Paul Erdős and Alfréd Rényi in 1959, is defined by having a proba-

bility p of connection between any two nodes in the network. Extending this definition to

directed graphs, two distinct directional edges can be between any two nodes. The probabilities

of these two edges existing are independent of each other, and both are equal to p.

3.1 Capacity testing

Let Gk = (Vk, Ek) represent the subgraph generated of the kth sample, where Vk denotes the set

of nodes, and Ek denotes the set of edges. Let Gk
sg ¼ ðV

k
sg;E

k
sgÞ represent the subgraph generated

during the retrieval of the kth sample. Define the accuracy Pk ¼
jEk\Eksg j

jEksg j
. Define the complete-

ness Ck ¼
jEk\Eksg j
jEkj . Define an isolated node as an initial node in the subgraph with both in-degree

and out-degree equal to zero. The sample representation quality, Q, is defined as the percent-

age of non-isolated nodes relative to the initial nodes. If the number of initial nodes in the sam-

ple is s, and the number of isolated nodes in the subgraph generated by the sample is l, then

Q ¼ s� l
s . In capacity testing, each stored sample should satisfy a high sample representation

quality and high completeness and accuracy during sample retrieval to be considered success-

fully stored by the network. Based on this, we can define the reliable capacity of the network.

Let the reliable capacity, T, represent the maximum number of samples that the network can

successfully store, and for each stored sample, it satisfies Qk> 0.9, i 2 [1, T],

�P ¼
PT

k¼1
Pk

T > 0:9, �C ¼
PT

k¼1
Ck

T > 0:9.

Assume the network has n nodes, each node has an internal index table with a capacity of

K, and each subgraph contains, on average, s initial nodes and c communication nodes. For

every subgraph stored in the network, there will be an increase or modification in the internal

index table entries of the activated nodes. Considering this as a resource, the total number of

resources in the network is nK, and each subgraph occupies s + c resources. Without consider-

ing resource reuse or optimization measures, the network will consume s + c resources for

every stored sample, so the network capacity can be roughly represented as nK
sþc. If resource

reuse is allowed, the calculation of network capacity becomes more complex. In an extreme

case, where the resources occupied by the current subgraph are all reused, the upper bound of

the network capacity can be roughly expressed as the combination number nK
sþc

� �
. The net-

work capacity obtained from these two different calculation methods differs greatly. In actual

testing, there are many other influencing factors, such as different network connectivity and

conflicts between samples. Therefore, a theoretical network capacity analysis is difficult, and a

specific analysis should be conducted in conjunction with actual testing situations.

Table 1 shows the performance of sample retrieval after storing 1,000 samples in networks.

The node index table size is set to K = 20. The scale of a single sample refers to the size of the

initial node set. As shown in Table 1, the capacity of sparse graphs is typically larger than that

of dense graphs with the same node size. The primary distinction between sparse and dense
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graphs lies in the number of directed edges within the network, which directly influences net-

work connectivity. This can also be observed from the average number of weakly connected

components in the subgraphs presented in Table 1. For networks with the same node size, the

more edges they have, the fewer weakly connected components their subgraphs have on aver-

age. Generally, the subgraphs generated by samples are not necessarily connected but are com-

posed of multiple connected components. Weakly connected components (WCCs) are

defined as components where undirected edges replace all directed edges, and any two points

within the component are reachable from one another. The number of connected components

reflects the aggregation of the subgraph. A greater number of connected components indicates

a more dispersed subgraph, while a smaller number of connected components signifies a more

clustered subgraph.

The connectivity or structure of subgraphs is undeniably a crucial factor influencing net-

work capacity, as it determines the resource usage of each subgraph. There are two main fac-

tors that impact subgraph connectivity: the scale of a single sample and network connectivity.

Table 1 demonstrates that a larger scale of a single sample and better network connectivity will

reduce network capacity. This observation is intuitive for the former but counterintuitive for

the latter. However, when the scale of a single sample node is 0 or network connectivity is

extremely poor, the network capacity tends to be 0. This suggests that the relationship between

network capacity and subgraph connectivity is not linear.

Fig 7 shows the changes in network capacity and subgraph structure as the number of edges

in a network increases. The node size of the network is 500, and the single sample scale is 60. It

can be observed that the network capacity first rises and then declines, eventually stabilizing

near the theoretical capacity value in the simple case, which is nK
sþc. During the stage of network

capacity growth, both the average number of WCCs and the average number of nodes in the

subgraph decrease, suggesting that the subgraph progressively transitions from “dispersed” to

“clustered.” Subsequently, there is a sharp decline in network capacity, and the average num-

ber of WCCs in the subgraph also drops dramatically. This indicates that the network connec-

tivity has reached a critical point, with almost all nodes in the subgraph belonging to the same

WCC. As a result, the “agglomeration effect” emerges. It means most initial nodes can connect

Table 1. Different-scale network retrieval performance after storing 1000 samples.

Number of

network

nodes

Number of

edges

Single

sample

scale

Subgraph average

number of nodes

Subgraph

average number

of edges

Subgraph average

number of WCCs

Average

accuracy

Average

completeness

Accuracy

Std Dev

Completeness

Std Dev

500 3101

(Sparse)

15 24.024 15.651 3.372 99.6% 98.4% 0.0013 0.0028

500 3101

(Sparse)

60 85.343 70.763 10.312 97.5% 94.8% 0.0036 0.0044

500 12606

(Dense)

15 28.407 27.774 2.760 98.1% 67.2% 0.0032 0.0049

500 12606

(Dense)

60 66.590 88.406 1.720 99.0% 63.2% 0.0011 0.0087

2000 15037

(Sparse)

15 30.428 20.664 3.391 99.5% 98.7% 0.0023 0.0026

2000 15037

(Sparse)

60 101.564 71.571 14.048 99.4% 98.4% 0.0013 0.0010

2000 199452

(Dense)

15 38.593 41.987 1.706 100% 82.5% 0.0001 0.0095

2000 199452

(Dense)

60 68.729 104.784 1.356 100% 57.9% 0.0000 0.0021

https://doi.org/10.1371/journal.pcsy.0000019.t001
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directly without passing through other communicating nodes. When the network capacity

reaches its peak, the average number of nodes in the subgraphs is close to the scale of a single

sample, and the number of WCCs is slightly above 1.

Erdős and Rényi [30] demonstrated that when p > ð1þ�Þln n
n , the ER random graph G(n, p) is

almost always connected. To ensure that the subgraphs generated by the samples have a high

probability of only 1 WCC, it needs to guarantee that p > ð1þ�Þln s
s , where s represents the scale

of a single sample, which is 60. Let’s take p ¼ ln s
s � 0:07. The generated subgraph in this sce-

nario is shown in Fig 8A. If we take p = 0.04, corresponding to the p when the network capac-

ity reaches its peak, the generated subgraph is shown in Fig 8B. It can be found that the

essence of large capacity is actually the permutation and combination of multiple WCCs.

When p is slightly less than ln s
s , the subgraphs generated by the samples are composed of a

small number of WCCs. Assuming the subgraph is evenly divided into t WCCs, the size of

each WCC is sþc
t . The network capacity can be perceived as selecting t WCCs from all possible

ones. This is essentially a Uniform disordered grouping problem. The calculation result is

shown in formula 1. Although the actual capacity is significantly smaller than this value, it

Fig 7. The relationship between the number of edges and network capacity and subgraph structure.

https://doi.org/10.1371/journal.pcsy.0000019.g007
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still demonstrates the huge storage potential of the network.

T ¼

n
sþc
t

� � n � sþ c
t

sþc
t

� �
:::

n � ðt � 1Þsþ c
t

sþc
t

� �

t!

¼
n!

ðt!Þ
sþcþt

t ðn � s � cÞ!

ð1Þ

Fig 9 demonstrates the average accuracy, accuracy standard deviation, average complete-

ness, and completeness standard deviation of sparse and dense graphs with the same number

of nodes. These data provide a clear visual comparison of the memory performance differences

between different graph structures. It can be observed that in the sparse graph, the average

completeness of sample retrieval drops below 80% when the number of stored samples exceeds

8000. In contrast, for the dense graph, the average completeness of sample retrieval declines

below 80% when the number of stored samples approaches 300. This capacity difference

between the two networks further confirms that the arrangement and combination of WCCs

are the essences of large capacity. Although the dense graph has more connections, its dis-

played capacity is not directly proportional to the number of resources owned by the network.

Conversely, the sparse graph has only a small number of connections, but the network capacity

achieved by the arrangement and combination of multiple connected subgraphs is several

times that of the dense graph. This indicates that a sparse connection is a more reasonable

mode, which can effectively save resources and obtain a larger network capacity. Moreover,

the biological neuron network of the human brain also follows a sparse connection mode,

Fig 8. Storage examples under different network connectivity. (a) The sample-generated subgraph in an ER random graph with p = 0.07. (b) The

sample-generated subgraph in an ER random graph with p = 0.04.

https://doi.org/10.1371/journal.pcsy.0000019.g008
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implying that sparse connections are efficient and maximize the use of resources. Sparse con-

nectivity significantly reduces wiring costs. In the brain, each neuron is connected to only a

limited number of other neurons, greatly reducing the number and length of nerve fibers. This

reduction in nerve fibers not only saves biological materials but also decreases the energy con-

sumption required for the brain to grow and maintain these connections. At the same time,

sparse connectivity enables more efficient information transmission. In a sparsely connected

network, signals are quickly transmitted to target neurons through specific pathways, mini-

mizing unnecessary transmission delays. This efficient mode of information transmission

allows the brain to respond rapidly to external stimuli and perform excellently in complex cog-

nitive tasks.

3.2 Fault tolerance testing

Fault tolerance testing primarily explores the effect of sample retrieval when the input is

incomplete or noisy. The network used in the experiment is an ER random graph with 500

nodes and either 3082 (sparse graph) or 12606 (dense graph) edges. The experiment first stores

1000 samples in the network and then modifies the sample inputs during the retrieval process.

Finally, compare how the average accuracy and completeness change when the sample input is

incomplete or has noise. There are three categories of modifications to inputs:

1. Removing a part of the original sample input to explore the impact of incomplete inputs on

sample retrieval performance.

2. Adding extra noisy nodes to the original sample to investigate the impact of noise on

retrieval.

3. Removing part of the original sample input and replacing it with an equal number of noisy

nodes to examine the impact of sample retrieval in this mixed scenario.

Fig 10 shows the average accuracy, accuracy standard deviation, average completeness, and

completeness standard deviation of sparse and dense graphs under conditions of incomplete

sample input. As the level of missing sample input increases, both the retrieval accuracy and

completeness of sparse and dense graphs decrease to varying degrees. The change trends of the

two networks are generally similar, and the decline in accuracy is relatively gentle. When the

Fig 9. Comparison of capacity between sparse and dense graphs. (a) Results in a sparse graph. (b) Results in a dense graph.

https://doi.org/10.1371/journal.pcsy.0000019.g009
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proportion of missing parts reaches 80% of the input, the rate of accuracy decline increases sig-

nificantly. Compared to Fig 10B and 10A has higher completeness and accuracy when the pro-

portion of missing inputs is between 0.0 and 0.1. This is because the network capacity of the

dense graph is small, making it difficult to achieve high reading accuracy and completeness

after storing 1000 samples. The overall decline rate of completeness is greater than that of accu-

racy, indicating that the erroneous content obtained during retrieval does not increase as the

proportion of missing inputs increases. This suggests that the algorithm is relatively reliable

when facing missing sample inputs, although the rapid decline in completeness represents a

significant amount of correct content that cannot be read. However, even when the proportion

of missing inputs is as high as 80%, the retrieval accuracy can still be maintained at around

40% to 50%, which means that even if there are numerous missing inputs, almost half of the

read content is correct and reliable.

Fig 11 shows the average accuracy, accuracy standard deviation, average completeness, and

completeness standard deviation of sparse and dense graphs with the addition of noise nodes.

It can be observed that these additional noise nodes have relatively little effect on the accuracy

and completeness of sample retrieval. The decline rate of completeness is lower than that of

accuracy because adding noise nodes generally do not directly disrupt the original subgraph

structure but makes the final subgraph larger. This demonstrates that the network has strong

resistance to noise and is sensitive to the absence of sample inputs.

Fig 12 presents the performance of both incomplete and contained noise nodes in the sam-

ple input under sparse and dense graphs, respectively. It can be seen that the decline rate of

accuracy and completeness, in this case, is the fastest, indicating that the impact of missing

inputs and the effect of noise nodes can be superimposed.

3.3 Robustness testing

It is known that neurons in the biological brain may experience various functional failures.

How does this affect memory? This section primarily examines how the performance of

Fig 10. The impact of incomplete sample input on sample retrieval. (a) Test results in a sparse graph. (b) Test results in a dense graph.

https://doi.org/10.1371/journal.pcsy.0000019.g010
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sample retrieval changes when the network is damaged to different degrees. The test includes

two main aspects: damage to some nodes and damage to some directed edges. The experiment

first stores 1000 samples in the network, then deletes a certain proportion of nodes or directed

edges and subsequently attempts to retrieve these samples while recording average accuracy

Fig 11. The impact of noisy sample input on sample retrieval. (a) Test results in a sparse graph. (b) Test results in a dense graph.

https://doi.org/10.1371/journal.pcsy.0000019.g011

Fig 12. The impact of both incomplete and contained noise nodes in the sample input on sample retrieval. (a) Test results in a sparse graph. (b)

Test results in a dense graph.

https://doi.org/10.1371/journal.pcsy.0000019.g012
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and completeness changes. The network used in the experiment is an ER random graph with

500 nodes and 3101 edges (sparse graph) or 12606 edges (dense graph).

After a node or a directed edge is deleted, the activation traces recorded in the node’s inter-

nal index table will be affected. Assume that an index table contains two items: va,vb,vc! vx,vy,
vz and vb,vc,vd! vu,vx,vz. If nodes va, vd, and vz are deleted, does it need to delete the corre-

sponding node in the activation trace recorded in its index table? If deleted, then these two

items will become: vb,vc! vx,vy and vb,vc! vu,vx. It can be observed that the input parts of

these two items are the same, so addressing the different output parts is a challenge. Usually,

during the initial period after network damage, nodes are hard to respond, and at this time,

the original traces stored in the node index table will not change. As the damage duration

increases, nodes may gradually make corresponding adaptive adjustments to the damaged net-

work. Given the above two different situations, this paper proposes four restoration schemes,

as shown in Table 2, and compares these four solutions.

Fig 13 demonstrates the impact of partial node damage on sample retrieval performance.

Fig 13A and 13B respectively display the changes in average accuracy and completeness of

sample retrieval in the sparse graph for the four restoration schemes. In terms of average accu-

racy, the scheme that maintains the original traces performs the best, the scheme that takes the

union performs the worst, and the other two schemes exhibit similar performance. Conversely,

in terms of average completeness, the results are reversed. The scheme that takes the union

performs the best, while the one that maintains the original traces performs the worst. This is

because the union-taking scheme increases the number of activated nodes, which includes

both incorrect and correct nodes. The former leads to a decrease in accuracy, while the latter

leads to an increase in completeness. Fig 13C and 13D present the results on the dense graph,

revealing that when the network has a large number of edges, the differences between the four

restoration schemes progressively diminish. This occurs because when network connectivity is

high, the number of communication nodes in the subgraph generated by the sample is small,

with most initial nodes being directly connected. Consequently, the accuracy remains consis-

tently high. The frequency at which each node is shared by different samples is also reduced,

so when a node is deleted, the number of samples it affects decreases, making the differences

between the four solutions less noticeable.

Fig 14 shows the impact of partial directed edge damage on sample retrieval. Since a node

only has a local view, it can receive and transmit the information of neighboring nodes solely

through its fan-in and fan-out edges. Node damage can be understood as the interruption of

all fan-in and fan-out connections, so the impact on neighboring nodes is essentially the same,

whether node damage or directed edge damage. Consequently, the same restoration schemes

can be used. Fig 14A and 14B respectively display the changes in average accuracy and com-

pleteness of sample retrieval for the four restoration schemes in the sparse graph. Their trends

are almost consistent with Fig 14A and 14B. Regarding accuracy, the notable difference

between the two is that in the interval [0.8,1.0], Fig 14A maintains relatively high accuracy.

Table 2. Restoration schemes for the index table after damage.

Restoration schemes The modified content of the index table

Maintain the original trace {va,vb,vc}! {vx,vy,vz},
{vb,vc,vd}! {vu,vx,vz}

Take the union of the outputs {vb,vc}! {vx,vy,vu}

Take the intersection of the outputs {vb,vc}! {vx}
Take the output with the highest occurrence frequency {vb,vc}! {vx,vy} or {vu,vx}

https://doi.org/10.1371/journal.pcsy.0000019.t002
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Regarding completeness, the curve of Fig 14B is comparatively flat. Fig 14C and 14D are the

results of dense graphs. The results are also consistent with those of Fig 13C and 13D. The dif-

ference is the same as that observed in the sparse graph, which indicates that the network is sig-

nificantly more tolerant of directed edge damage than node damage, as nodes hold

information while edges do not.

3.4 Performance testing on different classical network structures

The information storage and retrieval algorithm proposed in this paper is closely related to the

network structure. Firstly, the algorithm utilizes the subgraph structure as the information

storage carrier, and secondly, the subgraph formation depends on stimulus propagation. Both

of these characteristics emphasize the importance of the network structure for the algorithm.

Therefore, different network structure characteristics are key factors affecting the algorithm’s

performance.

Fig 15 showcases six classic network structures. Fig 15A is the ER graph with p = 0.1. Fig

15B represents a globally coupled network, also known as a fully connected network. Fig 15C

shows the nearest-neighbor coupled network, characterized by N nodes arranged in a ring,

with each node establishing connections to its left and right L neighbors, respectively. Fig 15D

illustrates a star coupled network, featuring a central node to which all other nodes are con-

nected. This characteristic causes any path between two points in the network to include the

central node, creating a bottleneck for the entire network capacity. Fig 15E presents a one-

Fig 13. The impact of partial node damage on sample retrieval. (a) The change in accuracy in a sparse graph. (b) The change in completeness in a

sparse graph. (c) The change in accuracy in a dense graph. (d) The change in completeness in a dense graph.

https://doi.org/10.1371/journal.pcsy.0000019.g013
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dimensional Kleinberg network [31], a small-world network [32]. The network is constructed

by adding a few random edges to the nearest-neighbor coupled network. Fig 15F displays the

Price network [33], which is a scale-free network. The network’s generation relies on the pref-

erential attachment mechanism, where newly added nodes are more likely to connect to nodes

with higher degrees. Since each newly added directed edge point from the new node to the old

node, there are no loops in the network, leading to a significant decrease in network connectiv-

ity and capacity.

Evaluation parameters for different network structures typically include average path length

and clustering coefficient.

Average Path Length: Defined as the average of the shortest path lengths between any two

points in the network. The default shortest path length is usually positive infinity if the two

nodes are disconnected. This special case is common in directed graphs. To prevent the calcu-

lation result from being positive infinity, this paper uses the harmonic mean [34] of the dis-

tance between any two nodes in the network to represent the average path length.

N represents the number of network nodes, and d(vi, vj) represents the shortest distance

between node vi and node vj. GE represents network communication efficiency, with its essen-

tial idea being that the closer the node path distance in the network, the higher the communi-

cation efficiency. The average path length calculated by the formula 2 [34] solves the problem

of the value being positive infinity when the network is disconnected. Therefore, it is more

Fig 14. The impact of partial directed edge damage on sample retrieval. (a) The change in accuracy in a sparse graph. (b) The change in

completeness in a sparse graph. (c) The change in accuracy in a dense graph. (d) The change in completeness in a dense graph.

https://doi.org/10.1371/journal.pcsy.0000019.g014
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suitable for evaluating directed graph network structure.

L ¼
1

GE
;GE ¼

1

NðN � 1Þ

X

vi�vj

1

dðvi; vjÞ
ð2Þ

Clustering coefficient: This metric is used to measure whether the nodes in the network

exhibit aggregation characteristics. This paper adopts the calculation method of the clustering

coefficient in directed graphs proposed by Fagiolo [35].

Table 3 displays the test results of six network models with different structures but similar

scales. The number of nodes in all test networks is 1000, and the single sample scale is 60. The

ER random graph exhibits a small clustering coefficient and average path length, while the

nearest-neighbor coupled network has a large clustering coefficient and average path length.

The Kleinberg directed small-world network has a large clustering coefficient and a small aver-

age path length. Kleinberg’s directed small-world and nearest-neighbor coupled network dem-

onstrate relatively excellent network capacity among these six network types. Fig 16 illustrates

Fig 15. Six classic network structures. (a) ER random graph with p = 0.1. (b) Globally coupled network. (c) Nearest-neighbor coupled network with

L = 1. (d) Star coupled network. (e) Kleinberg network. (f) Price network.

https://doi.org/10.1371/journal.pcsy.0000019.g015
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examples of sample storage corresponding to the two networks. A common feature observed

in both networks is the presence of numerous small WCCs. As previously mentioned in the

network capacity analysis, the essence of large network capacity lies in the arrangement and

combination of WCCs. Since both networks have relatively high clustering coefficients, it is

quite easy to form small components locally. Each subgraph can be considered a combination

of several small components, resulting in a higher network capacity. The reason for the higher

capacity of the Kleinberg network is that, due to its lower average path length, it is easier to

form some large WCCs. These large WCCs not only exhibit higher distinguishability but also

have a higher resource reuse rate for their nodes, thus positively impacting the improvement

of network capacity. In contrast, these characteristics are not present in the ER random graph.

Due to its low clustering coefficient and average path length, most weakly connected compo-

nents formed by the ER random graph are large in scale. This is the difference in capacity

caused by different network structures.

Table 3. Comparison of classic network models.

Network Type Number of

edges

Clustering

coefficient

Average path

length

Maximum reliable

capacity

Subgraph average

number of nodes

Subgraph average

number of edges

Subgraph average

number of WCCs

ER random graph

[29]

6070 0.006 3.797 85 128.139 116.708 12.044

Globally coupled

network [36]

999000 1.000 1.000 341 60.000 180.000 1.000

Nearest-neighbor

coupled [3]

6000 0.600 29.235 576 167.234 241.087 18.768

Star coupled

network [37]

1998 0.000 1.996 21 60.900 62.900 1.000

Price network [33] 5978 0.170 85.116 0 0 0 0

Kleinberg network

[31]

6995 0.440 4.613 6144 98.320 98.180 24.084

https://doi.org/10.1371/journal.pcsy.0000019.t003

Fig 16. Network storage example (a) Kleinberg network storage example. (b) Nearest-neighbor coupled network storage example.

https://doi.org/10.1371/journal.pcsy.0000019.g016
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3.5 Performance comparison with other models

This section compares the performance of the model proposed in this paper with other mod-

els. There are three models involved in the test: the first one is the memory model based on

directed graph storage proposed in this paper, abbreviated as MMDGS. The second one is the

discrete Hopfield network model [15]. The third one is the SAM (Sparse Associative Memory)

model [38]. The test focuses on the total capacity comparison, and the parameters and updat-

ing methods of each network model are as follows.

MMDGS. The network has 500 nodes and 3265 edges (sparse graph). The node index

table capacity is 20.

Hopfield. The network has 500 nodes and 249,500 edges (fully connected network). The

update strategy is asynchronous, meaning only one node state is updated at each moment.

SAM. The network has 500 nodes, with parameters set according to the original paper.

Each memorized sample generates h = 2 new nodes in the hidden layer. These h nodes estab-

lish excitatory connections with each activated node in the input layer. The activated nodes in

the input layer have a ps = 0.1 probability of forming excitatory connections with the newly

generated h nodes in the hidden layer. The update rule for each node in the hidden layer is

shown in formula (3), where yj(t) denotes the state of node j in the hidden layer at time t. H is

the Heaviside function, satisfying H(x� 0) = 1. Wji is the connectivity matrix from the input

layer to the hidden layer. θ = 0.6psr is the activation threshold, and r is the size of the activation

point set in the input layer, i.e., the sample scale. The update rule for each node in the input

layer is shown in formula (4), where xk(t + 1) denotes the state of node k in the input layer at

time t + 1. Ukj is the connectivity matrix from the hidden layer to the input layer. T denotes the

total number of stored memory samples.

yjðtÞ ¼ Hð
Xn

i¼1

WjixiðtÞ � yÞ 8j ð3Þ

xkðt þ 1Þ ¼ Hð
XTh

j¼1

UkjyjðtÞ � 1Þ 8k ð4Þ

The experiment involves fixing the scale of individual sample nodes and randomly generat-

ing sample sets of different sizes. Each network memorizes all the samples in the sample set,

recalls them sequentially, and calculates the average accuracy and completeness of recall. The

experiment was repeated 10 times, and the results were averaged. The sample node scales

include two types: 50 (small scale) and 200 (large scale).

The results of the experiments at small scales are shown in Fig 17. MMDGS performs well

in terms of accuracy and completeness, while the Hopfield network performs poorly. This is

because Hopfield’s network structure is fully connected. Since the sample scale is small, the

active nodes receive many inhibitory inputs at each iteration, resulting in an inability to main-

tain their active state, ultimately leading to lower capacity. SAM exhibits higher completeness

of sample recall, with accuracy decreasing as the number of memorized samples increases and

stabilizing at around 200. This stabilization value of 0.1 indicates that all nodes in the input

layer are activated, which is a meaningless recall.

The results of the experiments at large scales are shown in Fig 18. MMDGS also maintains a

very high average accuracy and completeness, indicating that the capacity of MMDGS is sub-

stantial. Unlike the small-scale experiments, Hopfield’s capacity performs better in large-scale

tests, while SAM performs worse. As the sample scale increases, the active nodes in the Hop-

field network are less likely to be overwhelmed by inhibitory inputs during iteration. The
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network can iterate normally up to local extremes, at which point the capacity increases. For

SAM, each sample is mapped to h nodes in the hidden layer. Whenever a node in the hidden

layer is activated, the corresponding sample is awakened. As the sample scale increases and

more samples are memorized, more nodes in the hidden layer are connected to each node in

the input layer, increasing the probability of false activation. Therefore, SAM has more capac-

ity at small sample scales. This also causes SAM to depend on the content of the memorized

samples. In Fig 18, it can be seen that the recall accuracy of SAM has significant jitter, indicat-

ing poor capacity stability.

4 Conclusion

In this paper, we employ subgraphs as physical carriers for information storage and leverage

nodes’ autonomous adaptive learning behavior to achieve a large-capacity and stable directed

graph storage model. The individual nodes’ learning behavior does not need a global view,

meaning that the tiny algorithms operating within each node do not work under strong central

control and are entirely decentralized. Both the learning behavior and the supporting hard-

ware resources are fine-grained and distributed and can, in theory, be highly parallel in physi-

cal implementation.

The storage capacity of the network depends on factors such as connectivity and network

structure. The dense graph has better connectivity, the subgraphs generated by the samples are

usually gathered together, and the communication nodes are rarely used. The measured capac-

ity at this time is low, approaching the theoretical capacity limit that disallows resource reuse.

Sparse graphs exhibit poor connectivity, and the sample-generated subgraphs are generally

more dispersed, often consisting of several weakly connected components. In this case, the

sample-generated subgraphs can be viewed as a permutation of connected components,

Fig 17. Comparison of the capacities of three models (sample node scale of 50).

https://doi.org/10.1371/journal.pcsy.0000019.g017
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significantly increasing the network capacity. Tests have shown that a sparse random directed

graph with 500 nodes and 3101 edges can store nearly 8000 memory samples with over 80%

accuracy and completeness. In contrast, a dense graph with 500 nodes and 12606 edges can

only store around 300 memory samples.

Sparse graphs have fewer resources than dense graphs, but the actual number of samples

they can store is tens of times more than dense graphs. It demonstrates that resource abun-

dance is not the sole factor determining network capacity. The network’s structural properties,

such as connectivity, clustering coefficient, and average path length, are also crucial. Biological

neuronal networks exhibit sparse connections and show large capacity and low power con-

sumption characteristics. To some extent, this paper also provides a possible explanation for

how biological neuronal networks can achieve memory functions.

The study of memory mechanisms involves interdisciplinary research, such as cognitive

psychology, which investigates memory through behavioral experiments, and neurobiology,

which explores memory mechanisms at the anatomical and electrophysiological levels. How-

ever, many unknown details still exist in linking the microscopic molecular and cellular levels

with the macroscopic cognitive and behavioral levels to form a complete information process-

ing mechanism. Currently, there is a lack of sufficient understanding of the biological imple-

mentation process of memory mechanisms in the brain, making it challenging to accurately

model these mechanisms.

In this paper, we abstract the brain’s neuronal network into a directed graph storage model

based on neurobiological constraints such as distributed processing, local perspective, and

autonomous activity. By combining theories from graph theory and multi-agent systems, we

investigate the storage capacity of an active directed graph from the perspective of graph

Fig 18. Comparison of the capacities of three models (sample node scale of 200).

https://doi.org/10.1371/journal.pcsy.0000019.g018
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theory. From the algorithmic level, we construct a directed graph storage model that conforms

to neurobiological constraints, providing a potential perspective and approach for exploring

memory mechanisms.
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29. Erdos P, Rényi A. On the evolution of random graphs. Publ Math Inst Hung Acad Sci. 1960; 5: 17–60.

30. Erdos P, Renyi A. On random graphs I. Publ Math Debrecen. 1959; 6: 290–297. https://doi.org/10.

5486/PMD.1959.6.3-4.12

31. Easley D, Kleinberg J. Networks, Crowds, and Markets: Reasoning about a Highly Connected World.

Cambridge University Press; 2010.

32. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998; 393: 440–442.

https://doi.org/10.1038/30918 PMID: 9623998

33. Price D J D S. Networks of scientific papers: The pattern of bibliographic references indicates the nature

of the scientific research front. Science. 1965; 149: 510–515. https://doi.org/10.1126/science.149.

3683.510

34. Wang XF, Li X, Chen G R. Network science: an introduction. Higher Education Press; 2012. 95–142.

35. Fagiolo G. Clustering in complex directed networks. Physical Review E—Statistical, Nonlinear, and

Soft Matter Physics. 2007; 76: 026107. https://doi.org/10.1103/PhysRevE.76.026107 PMID:

17930104

PLOS COMPLEX SYSTEMS A circuit-level exploration for memory

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000019 November 5, 2024 32 / 33

https://doi.org/10.1371/journal.pbio.3001450
https://doi.org/10.1371/journal.pbio.3001450
http://www.ncbi.nlm.nih.gov/pubmed/34767545
https://doi.org/10.1038/nn.4237
https://doi.org/10.1038/nn.4237
http://www.ncbi.nlm.nih.gov/pubmed/26906506
https://doi.org/10.1109/ACCESS.2018.2831228
https://doi.org/10.1126/science.aaw4325
http://www.ncbi.nlm.nih.gov/pubmed/31896692
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
https://doi.org/10.1007/s10955-017-1806-y
https://doi.org/10.1109/21.87054
https://doi.org/10.1109/TSMC.2020.3043249
https://doi.org/10.1109/TSMC.2020.3043249
https://doi.org/10.3389/fncom.2023.1254355
http://www.ncbi.nlm.nih.gov/pubmed/37927548
https://doi.org/10.1371/journal.pcbi.1010086
https://doi.org/10.1371/journal.pcbi.1010086
http://www.ncbi.nlm.nih.gov/pubmed/36074778
https://doi.org/10.1126/science.aat3810
https://doi.org/10.1126/science.aat3810
http://www.ncbi.nlm.nih.gov/pubmed/29903972
https://doi.org/10.1016/j.celrep.2015.03.017
https://doi.org/10.1016/j.celrep.2015.03.017
http://www.ncbi.nlm.nih.gov/pubmed/25843716
https://doi.org/10.1038/nrn.2015.21
http://www.ncbi.nlm.nih.gov/pubmed/26865019
https://doi.org/10.1016/j.nlm.2020.107266
http://www.ncbi.nlm.nih.gov/pubmed/32512183
https://doi.org/10.1126/science.abg7285
https://doi.org/10.1126/science.abg7285
http://www.ncbi.nlm.nih.gov/pubmed/34516844
https://doi.org/10.5486/PMD.1959.6.3-4.12
https://doi.org/10.5486/PMD.1959.6.3-4.12
https://doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
https://doi.org/10.1126/science.149.3683.510
https://doi.org/10.1126/science.149.3683.510
https://doi.org/10.1103/PhysRevE.76.026107
http://www.ncbi.nlm.nih.gov/pubmed/17930104
https://doi.org/10.1371/journal.pcsy.0000019


36. Barabási AL. Network science. Philosophical Transactions of the Royal Society A: Mathematical, Physi-

cal and Engineering Sciences. 2013; 371: 20120375. https://doi.org/10.1098/rsta.2012.0375 PMID:

23419844

37. Newman M. Networks. Oxford University Press; 2018.

38. Hoffmann H. Sparse associative memory. Neural Comput. 2019; 31: 998–1014. https://doi.org/10.

1162/neco_a_01181 PMID: 30883276

PLOS COMPLEX SYSTEMS A circuit-level exploration for memory

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000019 November 5, 2024 33 / 33

https://doi.org/10.1098/rsta.2012.0375
http://www.ncbi.nlm.nih.gov/pubmed/23419844
https://doi.org/10.1162/neco_a_01181
https://doi.org/10.1162/neco_a_01181
http://www.ncbi.nlm.nih.gov/pubmed/30883276
https://doi.org/10.1371/journal.pcsy.0000019

