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Abstract

Machine learning (ML) algorithms may play a role in predicting the adverse health impacts
of climate-sensitive extreme weather events because accurate prediction of such effects
can guide proactive clinical and policy decisions. To systematically review the literature that
describe ML algorithms that predict health outcomes from climate-sensitive extreme
weather events. A comprehensive literature search was performed in the following data-
bases from inception—October 2022: Ovid MEDLINE, Ovid EMBASE, The Cochrane
Library, Web of Science, bioRxiv, medRxiv, Institute of Electrical and Electronic Engineers,
Google Scholar, and Engineering Village. The retrieved studies were then screened for eligi-
bility against predefined inclusion/exclusion criteria. The studies were then qualitatively syn-
thesized based on the type of extreme weather event. Gaps in the literature were identified
based on this synthesis. Of the 6096 records screened, seven studies met the inclusion cri-
teria. Six of the studies predicted health outcomes from heat waves, and one for flooding.
Health outcomes described included 1) all-cause non-age standardized mortality rates, 2)
heat-related conditions and 3) post-traumatic stress disorder. Prediction models were devel-
oped using six validated ML techniques including non-linear exponential regression, logistic
regression, spatiotemporal Integrated Laplace Approximation (INLA), random forest and
decision tree methods (DT), and support vector machines (SVM). Use of ML algorithms to
assess adverse health impacts from climate-sensitive extreme weather events is possible.
However, to fully utilize these ML techniques, better quality data suitable for use is desirable.
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Development of data standards for climate change and health may help ensure model
robustness and comparison across space and time. Future research should also consider
health equity implications.

Introduction

Climate change represents the greatest public health challenge of our time. In the United
States, seven in ten Americans experienced extreme weather events in 12022 [1]. While there
has been increasing acknowledgement in government [2, 3] and health-related organizations
[4, 5] of the impending threat that climate change and associated extreme weather events pose
to at-risk populations, there has been a focus on mitigating its severity rather than adapting to
anticipated impacts. However, adapting to future climate impacts will be increasingly impor-
tant [6]. Extreme weather events are likely to increase in frequency and destructiveness [7]; the
warming climate is leading to escalating risks related to heat waves, droughts, wildfires, severe
weather, tropical cyclones, extreme rainfall, and flooding.

Machine learning (ML) algorithms have the potential to play an important role in predict-
ing individual and population-level health impacts of climate-sensitive extreme weather. By
leveraging vast amounts of clinical, socioeconomic, and environmental data, ML-guided tools
can be harnessed to identify and quantify the risk to individuals and populations from specific
threats [8, 9], similar to their use in predicting breast cancer survival [10], occurrence of coro-
nary artery disease [11], and in classifying and detecting cancerous lesions on images [12, 13].
Additionally, ML-guided tools have the potential to build on existing systems that assess popu-
lations at risk from extreme weather events and take advantage of secondary data to do so. By
leveraging healthcare system data (e.g., electronic medical records), healthcare organizations
and public health authorities may have the opportunity to tailor algorithms to specific popula-
tions, making them more context- and disease-specific, and perhaps addressing limitations of
existing emergency preparedness systems.

It is unclear to what extent ML techniques are being used to predict health outcomes from
extreme weather events, and to what extent they may be useful for doing so. In this scoping
review, we aimed to comprehensively describe peer-reviewed manuscripts in the published
and grey literature reporting use of ML methods to predict health outcomes from climate-sen-
sitive extreme weather events worldwide.

Methods

We performed a scoping review to examine the use of ML techniques to predict health out-
comes during and after extreme weather events. This study was performed following the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping
reviews (PRISMA-ScR) [14]. In accordance with these standards, a protocol was submitted
and preregistered by the International Prospective Register of Systematic Reviews (PROS-
PERO; CRD42023391186). The PRISMA flow diagram is described in the Fig 1.

Search strategy

A medical librarian (MRD) performed comprehensive searches to identify studies that

addressed ML approaches to predicting at-risk populations or health impacts from climate-
sensitive extreme weather events. Searches were finalized October 20, 2022, in the following
databases: Ovid MEDLINE, Ovid EMBASE, The Cochrane Library (Wiley), Web of Science
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Fig 1. PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers
only. *Due to the inherently large number of results retrieved from a Google Scholar search, only the first 500 results
were screened.

https://doi.org/10.1371/journal.pcim.0000338.9001

(Core Collection-Clarivate), bioRxiv, medRxiv, Institute of Electrical and Electronic Engineers
(IEEE) database, Google Scholar, and Engineering Village (Elsevier). The search strategy
included all appropriate controlled vocabulary and keywords for the concepts of "machine
learning" and "natural disasters" or "extreme weather." The full search strategies for all
databases are available in Supplement (S1 Table). To limit publication bias, there were no
language, publication date, or article type restrictions on the search strategy. For articles
selected for inclusion in this study, reference lists and citing articles were pulled from Scopus
(Elsevier) and screened. Two additional studies were identified from hand-searching relevant
journals.
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Study selection

Retrieved studies were screened (AKG, MRD, SNS, SS, FW, LAC, CD, YL, DJM, KM, TMK)
for inclusion using Covidence systematic review software. Titles and abstracts were reviewed
against predefined inclusion/exclusion criteria by two independent reviewers. Discrepancies
were resolved by consensus. For final inclusion, the full text was retrieved and then screened
by two independent reviewers.

Inclusion and exclusion criteria

Our inclusion criteria were: (1) Population: participants > 18 years old; (2) Exposure: Extreme
weather and related events where the onset is acute, defined as within 2 weeks, and that are
thought to be exacerbated by climate change (i.e., hurricanes /cyclones/typhoons, wet precipi-
tation leading to flooding, wildfires, heat waves, extreme cold, mudslides); (3) Outcomes stud-
ied: health events (death, hospitalization, any presentation to clinic or emergency department)
within a defined time-frame (e.g., 30 days, 2 months, 1 year, 5 years); (4) Employs ML-based
modeling methods (e.g., linear regression, decision trees, k-nearest neighbors, random forests,
kernel methods, deep neural networks) [15] to predict the health outcomes; (5) The ML meth-
ods undergoes evaluation by assessment and/or creation of accuracy, precision, recall, specific-
ity, F1 score, Receiver Operator Characteristics curve, Precision Recall curve; (6) The ML
models undergo internal validation using either training and testing split, resubstituting, K
fold cross validation, bootstrapping, nested cross validation, or external validation using a dif-
ferent dataset.

Studies were excluded according to the following criteria: (1) Written in non-English lan-
guage; (2) Review articles, commentaries, or editorials; and (3) Authors do not include mea-
sures for ML model validation.

Data extraction

Data extraction was performed independently by a pair of reviewers with predefined, stan-
dardized templates. Each extraction was reviewed independently by a secondary reviewer
(SNS) after extraction by the primary reviewer (AKG). Data points defined for extraction were
extreme weather event; study design; population; health outcome; time horizon for health out-
come; ML techniques; validation methods; and key findings.

Data synthesis

Following data extraction, findings were synthesized qualitatively to describe the geographies
covered and study settings, types of extreme weather events, health outcomes, ML techniques
used, and validation methods employed. Gaps in the literature were then identified based on
this qualitative synthesis. No quantitative assessment of the literature (i.e., meta-analysis) was
performed because of the heterogeneity in ML techniques used and outcomes assessed.

Results

Summary of articles

The study selection process is outlined in the PRISMA flow diagram in Fig 1. After removal of
duplicates, a total of 6096 records were screened. A total of 7 studies, summarized in Table I,
met criteria for inclusion in the analysis.

1. Geographies covered and study settings. The seven studies analyzed in here report
data from the United States of America [16], Europe [17-19], China [20, 21] and South Korea
[22]. Data was collected at the country [18, 19], county [16] or division [20, 22], and city level
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[17, 21]. There were 16 European countries included, namely Austria, Belgium, Croatia, the
Czech Republic, Denmark, France, Germany, Italy, Luxembourg, Netherlands, Poland, Portu-
gal, Slovenia, Spain, Switzerland and the United Kingdom (England and Wales only) [18, 19].
The main study design used was retrospective secondary data analysis, utilized in six of the
articles [16-19, 21, 22]. The remaining study from Hunan, China used a multistage, stratified
cluster sampling design [20].

2. Extreme weather events studied. Six studies examined the impact of heat waves on
population health either daily [16, 18, 19, 21], within 2 days [17], or 1 week after the heat wave
[22]. There was variation in the definition of heat waves in different regions. Heat-associated
outcomes were documented for temperature >29°C in Lisbon, Portugal [17], >33°C in Korea
[22] and >35°C in China [21]. The study from Georgia, USA documented extreme heat events
as either a temperature measure greater than 95% percentile threshold of daily maximum tem-
perature, or 98th percentile threshold of daily minimum temperature or 99% percentile thresh-
old over apparent temperature [16]. Both Lowe et al. studies from Europe examined a heat
wave and cold spells for which the exact temperatures were not defined [18, 19]. One study
from the Hunan province in China examined the effect of a 1998 flood approximately two
years later [20].

3. Health outcomes evaluated. The health outcomes described in the final studies were
all-cause, non-age-standardized mortality [17-19], post-traumatic stress disorder (PTSD)
diagnosed using validated instruments [20], emergency department presentations [16], and
heat-related conditions including heat stroke, cardiovascular and respiratory diseases using
relevant International Classification of Disease version 9 codes from a thermal disease moni-
toring system [21, 22].

4. Description, and comparison of machine learning techniques employed. Among the
seven studies, there were six ML techniques utilized: non-linear exponential regression [17],
logistic regression [16, 20], spatiotemporal Integrated Laplace Approximation (INLA) [18, 19],
random forest models [21, 22] decision tree methods (DT), and support vector machines
(SVM) [22]. Only one study [22] compared their proposed model to other ML strategies: ran-
dom forest model to decision tree methods (DT), support vector machines (SVM) and logistic
regression (LR).

The techniques examined in this review are all supervised learning whose goal is to use
labelled data to predict outcomes. Of note, these techniques have varied levels of interpretabil-
ity and performance. In particular, the regression methods such as non-linear exponential and
logistic regression describe outputs that are more easily interpreted but may have lower perfor-
mance. On the other hand, the classification models including INLA, DT, and SVM use cate-
gorical labels, have lower interpretability and higher performance compared to the regression
models [15].

A common ML algorithm employed was logistic regression, an adaptive regression method
that attempts to construct predictors as Boolean combinations of binary covariates. For exam-
ple, Dessai et al. [17] employed non-linear exponential regression to model the aggregate,
non-linear effects of climate-related mortality. Jiang et al. [16] applied logistic regression to a
time-series analysis of ED visit data and extreme heat indicators. The different combinations
of the binary covariates allowed the authors to generate better predictive models that capture
both lagged and sustained effects of extreme heat. In their study, Huang et al. used a step-wise
forward regression to select predictive risk factors for the binary dependent variable, the pres-
ence or absence of PTSD [20].

Differently, both studies authored by Lowe employed INLA, a Bayesian technique that effi-
ciently models data structures with spatiotemporal components. They developed models to
estimate mortality-apparent temperature relationships in a Bayesian model framework, which
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allows the simulation of probabilistic predictions of daily mortality in space and time. These
models were then fitted with the INLA to simulate the mortality predictions for the heat and
cold spells [18, 19].

The third type of ML modeling was the random forest model. Random forest models are
used to construct hundreds or thousands of deep decision trees by employing a bootstrapping
method (a resampling technique that involves random sampling with replacement which
makes the forests stronger predictors). The outputs of these trees are then combined which
makes this method less prone to overfitting and multi-collinearity, allowing high predictability
with robustness that improve its generalizability. Additionally, random forests usually require
less parameter tuning which makes them a good method for smaller datasets [15]. Wang et al.
used the Boruta algorithm, a wrapper built around the random forest algorithm that uses a z-
score for feature selection, ensuring that the variables in their model was significantly corre-
lated with the outcome variable. They added socioeconomic variables including location, gross
domestic product, and population density which improved prediction and the model fitness
[21]. The Park et al. group also used the Boruta method to consider a range of socioeconomic,
meteorological, and demographic variables in their model. Of note, they report that regional
economic indicators such as income and insurance had less impact on prediction of the dis-
eases related to heatwaves [22].

Park et al. used other ML techniques including DT and SVM. DT are an essential building
block for many ML techniques (including random forest models) as they cluster data based on
classes or probabilities. However, a disadvantage of DT methods is that they are prone to over-
fitting. SVM methods are used for classification of continuous output, and they are robust to
noise and particularly effective in high-dimensional datasets. The goal of SVM is to find the
optimal decision boundary that separates the classes. Compared to DT and RF methods, the
outputs of an SVM may be less in interpretable [15]. Park et al. compared their RF model to
the DT and SVM to determine the accuracy in making predictions. Using the same training
data set, they found that the RF model was more accurate than other models for making pre-
dictions [22].

5. Validation methods used. The ML techniques were validated using three methods
including internal validation [17, 20, 21], simulation [16], and quantitative comparison
between predicted and observed data [18, 19, 22]. In one study, the authors undertook internal
validation of the ML method by splitting the data sets into two time periods, trained the model
with one time period and tested it on another, and then compared the observed and expected
values through residual analysis and regression coefficient [17]. In other studies, there was a
70/30 [20] or 90/10 [21] training/test dataset which was used to calculate area under the
receiver operator curve (ROC) [20, 21].

There was slight variation in the modes of quantitative comparison between the studies.
The Lowe studies also reported the area under the ROC, and positive predictor value (PPV)
for the heat wave model [18, 19]. Park et al. compared all three modeling strategies using the
mean absolute error (MAE), root mean squared error (RMSE), root mean squared logarithmic
error (RMSLE), and coefficient of determination R? [22].

Qualitative synthesis

1. Heat wave- and temperature-focused papers. Six of the seven studies that were
included focused on predicting health outcomes associated with heat waves [16-19, 21, 22];
two also evaluated cold spells [18, 19]. These large retrospective studies were conducted at city
[17, 21], county [16], division [22], or country [18, 19] level. There was variation in the defini-
tion of heat waves, with a range of temperatures above 29-35°C [17, 21, 22]. Most of the
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studies evaluated health outcomes daily [16, 18, 19, 21], while others examined at 2 days [17] or
1 week after the heat wave [22]. These included all-cause, non-age-standardized mortality [17-
19], emergency department presentations [16], or specific heat-related health conditions includ-
ing heat stroke, exhaustion, cramps, fainting and edema [21, 22]. The validated ML techniques
used have been described above. Two studies incorporated a range of socioeconomic data such
as area-level measures of income, insurance premiums, occupational groups and other environ-
mental factors including internet search index, urban vs rural populations, air conditioner num-
ber per hundred houses, and normalized difference in vegetation rates [21, 22].

2. Flooding paper. Huang et al. examined the effect of a 1998 flood in the Hunan province
in China approximately two years after the event [20]. They collected data from a qualitative
survey of 29285 individuals impacted by the flood. Seven independent predictive factors (age,
gender, education, type of flood, severity of flood, flood experience, and mental status before
the flood) were identified and used as key variables in a risk score model using stepwise, for-
ward logistic regression. The area under the ROC curve for the model was 0.853 in the valida-
tion data. The sensitivity, specificity, positive predictive value (PPV) and negative predictive
value (NPV) of this risk score model were 84.0%, 72.2%, 23.4%, and 97.8%, respectively, at a
cutoff value of 67.5 in the validation data.

Discussion

This scoping review identified seven articles predicting the relationship between exposure to
climate-sensitive extreme weather events and health outcomes using ML tools that underwent
validation. Heat waves were the most studied extreme weather event; two groups also com-
pared cold spells [18, 19]. All but one [16] of the studies was from outside the United States.

Findings from these studies suggest that the use of ML to predict health outcomes in popu-
lations at risk of climate-amplified extreme weather events is possible, can be done in a rigor-
ous manner, and has significant public health potential at the local level, regional, national,
and international level. Nonetheless, despite ML’s ever increasing role in the healthcare land-
scape over the last two decades [15], the relatively small number of studies identified in this
review highlights the lack of realized potential in using these tools to identify and safeguard
future populations from climate-sensitive extreme weather events.

ML powerfully enables complex analysis of huge datasets that can be leveraged to develop
risk prediction tools tailored to specific populations [8]. Additionally, ML-focused projects
have the potential to augment existing emergency preparedness systems by making them more
adaptable to different contexts and specific diseases. A key question stemming from this scop-
ing review is why, given the growing role of ML across the spectrum of healthcare in general,
has ML not been more rigorously utilized in assessing risk from climate-sensitive extreme
weather events, particularly in the US setting?

We posit three possible reasons. First, few countries and organizations have access to the
data necessary to examine the population-level health effects of climate change. Second, there
is a growing need for robust health and environmental data infrastructures including data/
metadata standards in climate and health. And third, there are unclear uses for ML-formed
risk prediction models in climate change.

To be useful as a public health tool, ML methods need to define populations at risk of cli-
mate-sensitive extreme weather events completely. We note that all except one of the reviewed
studies was from Europe and Asia where robust national healthcare data infrastructures exist,
thus allowing complex population-level analyses. In the US, national population-level health-
care is only organized for a few set populations (e.g., Medicare data for those > 65 years, those
on hemodialysis). Moreover, health data focused on disease surveillance and healthcare
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utilization is often collected by different organizations at the federal, state, and local levels,
leading to fragmentation across different geographic regions, populations, and levels of speci-
ficity. Although methods have been developed to organize healthcare data in the US, there is
still work to be done. Consequently, the United States is missing a significant opportunity to
harness its extensive expertise in ML and artificial intelligence to examine the impact of cli-
mate-sensitive exposures on populations, predict individuals at risk, and implement interven-
tions to safeguard lives and livelihoods in both the short and long term.

Our review highlights the need for more robust health and environmental data infrastruc-
tures that incorporate standard definitions and measurements of climate-sensitive exposures.
We note the heterogeneity in definitions of the heat waves with ranges in temperature from
29-35°C or undefined but > 95th percentile of the daily minimum range. Other variables such
as the health outcomes also varied in that some articles evaluated the daily mortality versus
emergency department visits versus heat-related conditions, some of which lacked specificity.
Not only does this lack of standardization pose challenges to compare and possibly fit pro-
posed models to different places without standardized metrics for the variables, but it also lim-
its any comparisons between geographic regions and across time. Thus, as a result, the lack of
standards prevents the identification and development of unified measures and guidelines to
examine the health effects of climate change broadly and build consensus towards potential
interventions. This is important, as climate-amplified extreme weather events are increasing in
frequency, intensity, and duration, and novel tools are critical to protecting populations from
their consequences.

Last, once developed, the appropriate agency or group which might employ these ML-
informed risk prediction tools is unclear. Currently, except for a few notable cases including
the Department of Health and Human Services emPOWER program [23], few actors have the
breadth, ability, and resources to leverage the knowledge generated from these tools to protect
the well-being of at-risk populations, particularly in the US. Lack of proper infrastructure for
surveillance, reporting, and integrated evidenced-based decision-making likely made the US
more susceptible to impacts from such events, as compared to other high-income countries
[24]. Historically, it has been the purview of emergency management services to address the
devastation wrought by extreme weather events. However, as these become more frequent,
there is concern that these services-typically provided only in the short-term-may not be able
to provide the necessary care in a repeated fashion and may miss opportunities for prevention-
focused efforts on longer timescales. As a result, countries, states, and cities may seek to reor-
ganize their preparation for and responses to extreme weather hazards, particularly as they
become more damaging in terms of health and financial cost. As these changes occur, ML pre-
diction tools may have a role in planning public health approaches and priorities in both pre-
and post-event phases.

A final notable feature of our review was the limited focus on factors related to the inequita-
ble impacts of climate-responsive environmental hazards. Addressing health inequities in
communities affected by climate-amplified extreme weather events requires nuanced socio-
economic data. ML methods are well-equipped to manage the nested, hierarchical structure of
such data forms. However, only two studies incorporated socioeconomic and other environ-
mental factors in their model to capture the complexity of their influence on health outcomes
[21, 22]. It is increasingly reported that extreme weather events disproportionately affect the
health of populations based on several factors [25] including advanced age [26], gender [26,
27], preexisting conditions [27-29], geographical features [28] especially cities [30], poverty
[28, 31], and population density [31]. Incorporation of socioeconomic and spatial parameters
in future work may be beneficial.
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Limitations in this study exist. Although we performed a comprehensive bibliometric anal-
ysis of existing peer-reviewed and grey literature in English, this review included only a small
number of final articles. While this limits synthesis of the data to generate strong conclusions
on how ML is used as a tool to predict health outcomes, we identify an opportunity to expand
use of this apparently underleveraged tool. Moreover, our methodology was robust in that our
initial screening was not language specific, and re-evaluated bibliographies of the final selected
manuscripts to ensure the completeness of the research.

In conclusion, this scoping review demonstrated the feasibility of using ML methods to pre-
dict the risk of adverse health outcomes from climate-responsive extreme weather events
including heat waves, cold spells, and floods. Despite the comprehensive approach, this review
yielded only seven articles meeting criteria for inclusion. While there is great opportunity to
use ML as a tool to identify and potentially develop strategies to protect vulnerable populations
from health harms resulting from extreme weather events, utilization of this tool has been lim-
ited. Future efforts may benefit from focusing on utilizing more comprehensive and higher
quality data with ML tools, creating data standards for climate change and health datasets to
ensure robustness of the models and comparability of results, and expanding the capacity of
agencies, health professionals, and other organizations to utilize this data and translate its find-
ings into actionable public health interventions.

Supporting information
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sion for Scoping Reviews (PRISMA-ScR) checklist. JBI = Joanna Briggs Institute;
PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses exten-
sion for Scoping Reviews. * Where sources of evidence (see second footnote) are compiled
from, such as bibliographic databases, social media platforms, and Web sites. ¥ A more inclu-
sive/heterogeneous term used to account for the different types of evidence or data sources
(e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may
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