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Abstract

A primary advantage to using reduced complexity climate models (RCMs) has been their

ability to quickly conduct probabilistic climate projections, a key component of uncertainty

quantification in many impact studies and multisector systems. Providing frameworks for

such analyses has been a target of several RCMs used in studies of the future co-evolution

of the human and Earth systems. In this paper, we present Matilda, an open-science R soft-

ware package that facilitates probabilistic climate projection analysis, implemented here

using the Hector simple climate model in a seamless and easily applied framework. The pri-

mary goal of Matilda is to provide the user with a turn-key method to build parameter sets

from literature-based prior distributions, run Hector iteratively to produce perturbed parame-

ter ensembles (PPEs), weight ensembles for realism against observed historical climate

data, and compute probabilistic projections for different climate variables. This workflow

gives the user the ability to explore viable parameter space and propagate uncertainty to

model ensembles with just a few lines of code. The package provides significant freedom to

select different scoring criteria and algorithms to weight ensemble members, as well as the

flexibility to implement custom criteria. Additionally, the architecture of the package simpli-

fies the process of building and analyzing PPEs without requiring significant programming

expertise, to accommodate diverse use cases. We present a case study that provides illus-

trative results of a probabilistic analysis of mean global surface temperature as an example

of the software application.

1 Introduction

The human-Earth system is fundamentally integrated with impacts and feedbacks tightly inter-

connecting outcomes across human decisions and the broader environment. Human decisions

regarding land use, water use, and energy consumption affect the broader Earth system, which

can subsequently drive future human decisions [1,2]. Multisectoral models are those that

include representations of energy, water, land, socioeconomic, and climate sectors in an
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integrated framework. The Global Change Analysis Model (GCAM), and similar multisectoral

models can be used to explore future scenarios with different water, energy, land use, and

socioeconomic outcomes that interact with the Earth system. Representative Concentration

Pathways (RCPs), for example, provide scenarios that reach varying magnitudes of radiative

forcing by the end of the century based on changing GHG emissions and land use [1–3].

Shared Socio-economic Pathways (SSPs) provide scenarios driven by plausible changes in

global developments including population and economic growth, fossil fuel dependency, and

costs of environmental degradation [3,4]. The development of an SSP-RCP framework (here-

after, SSPs) combines the climate and societal futures of SSPs and RCPs [3,5]. These scenarios

can be used in Earth system models (ESMs) to explore future climate outcomes given different

possible emissions scenarios. However, the breadth at which ESMs can investigate the climate

system comes at a significant computational expense.

Reduced complexity climate models (RCMs) play a significant role in quickly assessing how

key climate variables may evolve in the future, and can do so in a probabilistic framework,

made possible because of their simplified computational complexity [6–11]. By representing

only the most critical Earth system processes with reduced resolution in temporal and spatial

dimensions, RCMs are a useful alternative to more powerful but much slower ESMs in many

cases [9,12]. The computational efficiency of RCMs makes them an ideal tool for constructing

perturbed parameter ensemble (PPE) simulations, which are RCM ensembles built by running

the model iteratively with different parameter sets [7,13,14]. This ability enables effective sam-

pling of the parameter space, propagation of parameter uncertainty to RCM ensembles, and

provides a framework for probabilistic projection quantification [7–9,15,16].

The capacity for RCMs to conduct probabilistic projections with PPEs is critical, but few

RCMs have an easy-to-use and open-source workflow for this capability. In Phase 2 of the

Reduced Complexity Model Intercomparison Project (RCMIP), Nicholls et al. [17] highlight

the use of extant RCMs to perform probabilistic analyses to inform Earth system knowledge by

creating PPEs. Among the RCMIP models investigated; MAGICC, FaIR, and Hector are some

of the most relevant, with MAGICC and FaIR used in previous reports by the Intergovern-

mental Panel on Climate Change (IPCC) [12]. While both models are extensive and widely

used for probabilistic projections [18–20], they have some drawbacks. For example, while FaIR

demonstrates skillful outputs in RCMIP evaluations [17], it lacks a turnkey mechanism for

computing probabilistic distributions of climate variables [7,14]. This places a significant pro-

gramming responsibility on the user. Hector has similarly lacked a seamless method for proba-

bilistic projections. MAGICC is also one of the best-performing RCMs in RCMIP and takes

advantage of a rigorous statistical approach [10,21]. However, while it aims to shift to open-

source, it is currently a closed-source model. To use MAGICC to the fullest capability of the

model, users must contact model developers for access to the software package and probabilis-

tic distribution.

We address some of these drawbacks in our development of the R package Matilda. Matilda

is an open-science framework that provides a simplified method for conducting probabilistic

climate projections without imposing a significant programming burden on the user. Our

method generates parameter sets from Monte Carlo estimation of prior distributions from the

literature. It then builds PPEs, weights them for realism against observed data, and computes

probabilistic climate projections. While Matilda is flexible enough to operate with many

RCMs, it was designed explicitly for seamless integration with Hector.

Hector is an open-source, object-oriented simple climate carbon-cycle model capable of

emulating more complex ESMs and is executed in C++ [6,9,11]. It takes advantage of the

computational benefits described above by operating on a global spatial scale and annual time

step. The model functions by converting user-specified emissions to atmospheric
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concentrations which are used to calculate radiative forcing [6,9]. Hector then uses total radia-

tive forcing to derive global temperature change and other climate variables [9,11]. Despite its

reduced complexity, Hector provides a good representation of CMIP6 outputs for major cli-

mate variables across SSP scenarios [22]. In addition to operating as a stand-alone carbon-cli-

mate model, Hector is also used as the default climate module for GCAM [6]. Hector can also

be run as an R package and through a web-accessible interface (Hector UI), making it accom-

modating to a larger user base [22–24]. Hector’s design and performance make it an excellent

candidate for developing a user-friendly probabilistic climate projection tool in R. Pressburger

et al. [13]show the benefits of applying such a framework to account for uncertainty of model

parameters when assessing near- and long-term sources of atmospheric CO2. With Matilda,

users will be able to easily use Hector to conduct probabilistic climate projection analyses with-

out the burden of complex coding requirements. Matilda thus provides seamless integration

with the Hector reduced complexity climate model.

The objectives of this paper are twofold: 1) we introduce the Matilda R package that pro-

vides a simple framework for conducting probabilistic climate projection analyses using the

Hector simple climate model and 2) we showcase the package functionality with a case study

that provides illustrative results. We conclude with a list of future developments that can

improve the long-term utility of Matilda.

2 Software description

Here we introduce the software functions and basic workflow of the package (Fig 1). We use

applied examples to show package functionality by assessing climate change projections from

the SSP 2–4.5 emissions scenario (i.e., middle of the road SSP with the year 2100 radiative

Fig 1. Matilda workflow. Diagram detailing the Matilda workflow to compute probabilistic projections. Dotted lines indicate opportunities for the user to

define their own program specification. The dashed line in step 3 indicates the ability of the user to evaluate ensemble members repeatedly with different

scoring criterion.

https://doi.org/10.1371/journal.pclm.0000295.g001
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forcing level of 4.5 W/m2), providing step-by-step code and explaining the significance of each

function.

2.1 Installing the software

The Matilda software is available on GitHub. To install from our GitHub repository:

1)

2)

2.2 Software documentation

Full descriptions of package functions can be accessed in the package’s help documentation.

Furthermore, detailed documentation and vignettes are available from our GitHub repository

(github.com/jgcri/matilda).

2.3 Configuring a model core

An analysis in Matilda begins by setting up a Hector model instance, termed a “core”. A Hec-

tor core is an object that contains information about model inputs, current state, and outputs

for a specific Hector run. The information contained in an initiated core comes from an INI

file holding metadata, emissions scenarios, and model parameters needed to run Hector.

We call newcore() (a hector function) to initiate a core containing information to conduct

model runs using the SSP 2–4.5 emission scenario:

3)

library(remotes)

install_github("jgcri/matilda")

Once installed, the package is loaded as with any other R package:

library(matilda)

Matilda functions are fully integrated with Hector’s R interface, and therefore when

Matilda is installed and loaded, the hector package (https://jgcri.github.io/hector/) is

also loaded. Matilda requires the use of Hector V3.0 or newer [22].

ini_file <- system.file("input/hector_ssp245.ini", package
= "hector")

core_ssp245 <- newcore(ini_file, name = "SSP_245")
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2.4 Parameter estimation and establishing parameter sets

The basis of running Hector in a probabilistic setup relies on establishing a set of parameter

configurations that are used to run the model iteratively. Matilda uses parameter information

gathered from the literature to inform prior distributions (Table 1). To build parameter sets,

we draw parameter values from their prior distributions using Monte Carlo sampling. Each

parameter is sampled from its marginal prior distribution independently of the rest of the

parameters. The prior distribution for each parameter θi is defined using mean and standard

deviation estimates as in:

yi � Nðm;sÞ ð1Þ

where θi is a given Hector parameter and N(μ, σ) is the normal distribution of parameter θi

using hyperparameters μ (mean) and σ (standard deviation). Some parameters have marginal

distributions best represented using lognormal distribution, in such cases, (μ, σ) is substituted

by log(μ, σ) (Table 1). Using informed prior marginal distributions from the literature as a

starting point for building perturbed parameter sets enables the exploration of a range of possi-

ble parameter values from the multi-dimensional parameter space judged viable on the basis

of existing knowledge [13,25]. Once each parameter set of draws is performed, the full parame-

ter vector values are combined using a uniform multivariate distribution. This process assumes

independence of parameters, meaning for example that any value from the univariate draws of

parameter θ1 is equally likely to be paired with any value from the univariate draws of parame-

ter θ2. . .n. This parameter estimation process ultimately establishes parameter sets that account

for parameter uncertainty and can be used to build an ensemble of model runs that will be

evaluated against observational evidence for some salient output of those runs. In other words,

we use prior information about individual parameters to build parameter sets, remaining

agnostic about which sets will result in the most skilled model results until confronting Hec-

tor’s output with observed data.

In Matilda, we build parameter sets by calling generate_params(). Parameter distributions

are independent of the SSP scenario, however, to run this function the user must still provide

an established Hector core. Additionally, the user must specify the number of parameter sets

desired (draws). Using generate_params() will produce randomized draws each time it is run.

Therefore, the user should either save the resulting data frame or use set.seed() if replication of

parameter sets is critical to the analysis. In this example we use our previously established core

Table 1. Hector parameters used in Matilda. Hector parameters used to generate parameter sets in this work. The distributions are indicated as mean ± standard devia-

tion. References from where distributions are derived are included.

Parameter Description Units Distribution Reference of uncertainty

α Aerosol forcing scaling factor Unitless 1.0 ± 0.23

(Normal)

Smith et al (2020) [26]

β CO2 fertilization factor Unitless 0.55 ± 0.10

(Normal)

Jones et al (2013) [27]

ECS Equilibrium Climate Sensitivity ˚C 3.0 ± 0.65

(Lognormal)

Sherwood et al (2020) [28]

Keff Ocean heat diffusivity cm2 s-1 1.16 ± 0.118

(Normal)

Vega-Westhoff et al (2019) [29]

NPP0 Pre-industrial net primary productivity Pg C yr-1 56.2 ± 14.3

(Normal)

Ito (2011) [30]

Q10 Temperature sensitivity of heterotrophic respiration Unitless 2.2 ± 1.0

(Lognormal)

Davidson and Janssens (2006) [31]

https://doi.org/10.1371/journal.pclm.0000295.t001
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to produce a set of 25 parameter configurations and display a subset of samples from the

result:

4)

Parameters can be easily added or omitted from the new parameter set data frame. For

example, to run the model with a subset of parameters, undesired columns can be omitted

from the data frame. This will result in a data frame that only contains parameter distributions

that the user wishes to perturb. Similarly, the user can characterize additional parameter distri-

butions and add them as new columns to the data frame, as long as the parameter is described

in Hector.

Once established, the parameter sets are used as inputs for independent Hector model runs.

Thus, each model run represents a multivariate parameter combination as follows:

mi ¼ ðy1i
; y2i

; y3i
; . . . ; yni

Þ ð2Þ

where mi is an individual ensemble member and yf1� ngi
, are parameters sampled to build an

independent configuration. Using different parameter sets to run Hector allows us to build

PPEs and determine how different parameter combinations from a presumably viable parame-

ter space interact to affect climate variable projections. This method effectively propagates

parameter uncertainty to model ensemble uncertainty, a process described as forward uncer-

tainty propagation [32].

2.5 Forward uncertainty propagation and running the model

We run Hector for each of the parameter sets by calling iterate_model(), which runs the model

for each parameter set and combines the results into a data frame object representing the new

PPE. To run iterate_model(), the same core object is used as in previous steps and we also

must supply the object where parameter sets are stored:

5)

param_sets <- generate_params(core = core_ssp245, draws = 25)

print(param_sets)

## BETA Q10_RH NPP_FLUX0 AERO_SCALE DIFFUSIVITY
ECS

## 1 0.5429609 1.7033771 50.47088 1.2697224 1.070107 2.410262

## 2 0.5234430 1.4867288 51.41584 0.6596398 1.209486 3.092423

## 3 0.4225671 1.3724196 75.76174 0.9010108 1.037287 2.335147

## 4 0.4857051 1.9163999 86.77007 0.7581231 1.243966 2.712076

results <- iterate_model(core = core_ssp245, params = param_sets)

print(results)

## scenario year variable value units run_number

## 1 Unnamed Hector core 1745 CO2_concentration 277.1500 ppmv CO2 1

## 2 Unnamed Hector core 1746 CO2_concentration 277.1886 ppmv CO2 1

## 3 Unnamed Hector core 1747 CO2_concentration 277.2234 ppmv CO2 1

## 4 Unnamed Hector core 1748 CO2_concentration 277.2558 ppmv CO2 1
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The resulting data frame returns 25 separate runs, as indicated by the run_number column;

in this case, the total number of rows is 55600 (25 runs × 4 output variables × 556 years). Each

run includes values for the major climate variables of a Hector default output (CO2 concentra-

tion, total radiative forcing, CO2 forcing, and global mean air temperature) for the years 1745–

2300 (the time range defined by the SSP INI file we chose above).

While a core object and a data frame of parameter sets are the only required arguments to

run iterate_model(), additional arguments can be supplied to reduce the variables and year

range returned for each run using save_vars and save_years, respectively. This reduces the size

of the data stored in memory, which may be important when running the model to build large

ensembles (e.g., 15,000 members as in [13]). Any output variable from Hector can be returned

using save_vars() for any year range subset from 1745–2300. In the following example, we sup-

ply these arguments to return values only for CO2 concentration and global mean surface tem-

perature anomaly for the year range 1745–2100:

6)

The resulting data frame has only 17800 rows, a 68% savings over the full example above.

2.6 Model evaluation approach and scoring model runs

Evaluating ensemble members is important in climate model assessment because we do not

know a priori which parameter sets yield realistic simulations. Evaluation procedures allow us

to gain insight into the uncertainty of model outputs, thereby enhancing the fidelity of results.

The concept of weighting ensemble members is intuitive; members that are more skilled (i.e.,

agree better with the historical record) should receive a higher weight than members that are

less skilled (i.e., present larger deviations from the historical record). Ensemble members

closely aligned with historical climate data will contribute more information to our probabilis-

tic projections than members with outputs deviating significantly from the historical record.

Thus, the uncertainty from varying the model parameters a priori is “filtered” through an eval-

uation of the parameters performance against observations. Model weights are analogous to

the likelihood factor in Bayes Theorem (defined in Sec. 2.6.1) and could potentially be used to

update prior parameter distributions to approximate the posterior parameter distributions.

While this is a capability of Matilda, we do not discuss it at length in this paper. It is also

important to note the limitations to this approach. While the weighting approaches presented

here can be effective for updating marginal distributions of parameters independently, they

may not fully capture the complex dependencies present in multidimensional distributions.

This limitation becomes noticeable as the dimensionality of parameter space increases. In

these cases, formal Bayesian approaches (e.g., Markov Chain Monte Carlo) are better suited

for exploring a multidimensional parameter space.

Scoring PPE members in Matilda is conducted using score_runs() which requires (1) a

results data frame, (2) a scoring criterion, and (3) a scoring function/algorithm. The results

data frame typically comes from calling iterate_model(), as above.

Scoring criteria define information used to compare ensemble members against observational

data. A scoring criterion can be built by the user by calling new_criterion() and simply requires

results <- iterate_model(core = core_ssp245, params =
param_sets, save_vars = c("CO2_concentration", "gmst"),
save_years = 1745:2100)
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the climate variable to be used in the comparison, the years of comparison, and observed data val-

ues for the years specified. For example, a new criterion can be created based on global mean sur-

face temperature from a dataset containing observed warming values from 1990–2023:

7)

This defines a custom criterion: a time series of 34 (1990–2023) values that will be com-

pared against Hector’s “gmst” (global mean surface temperature anomaly) output variable.

The Matilda package has internally available scoring criteria for easy use, including criter-

ion_co2_obs() and criterion_gmst_obs(). Data contained in criterion_co2_obs() is pulled

from the Mauna Loa record of observed annual mean atmospheric CO2 concentration [33],

while criterion_gmst_obs() uses observed annual mean global surface temperature anomaly

data retrieved from the HadCRUT5 data set [34].

Scoring functions in Matilda apply different mathematical algorithms to compute model

weights based on the results and scoring criterion. We provide multiple mechanisms to weight

model outputs against observations, and users can define their own custom functions as well.

There are currently two internally available scoring functions called score_bayesian() and scor-

e_ramp(), that differ in functionality and computational complexity.

2.6.1 Scoring function: Score_bayesian(). Bayesian probability theory provides a rigor-

ous framework combining prior information, observational data, and model simulations for

parameter estimation, model evaluation, and uncertainty quantification [35,36]. The Bayesian

weighting scheme presented here was influenced by Bayesian model averaging (BMA) meth-

odology. In BMA, multiple model structures, each with specific parameterizations, are used to

make projections [35,37–40]. In the BMA method each model is a priori assumed equiproba-

ble but once observations are introduced, model probabilities change. Models that are more

consistent with observations are considered more likely, while the likelihood of models that

are inconsistent with observations is reduced [41]. During this process no model is completely

excluded from contributing information, but models are down weighted if they do not accu-

rately represent observations. In this way, score_bayesian() in Matilda behaves like BMA by

temp_data <- read.csv("example_temperature_data.csv")

head(temp_data)

## year anomaly_C

## 1 1990 0.3605625

## 2 1991 0.3388965

## 3 1992 0.1248968

## 4 1993 0.1656585

## 5 1994 0.2335498

## 6 1995 0.3768662

user_temp_criterion <- new_criterion(var = "gmst", years =
temp_data$year, obs_values = temp_data$anomaly_C)

print(user_temp_criterion)

## Criterion for screening Hector: gmst 1990 to 2023

PLOS CLIMATE Matilda: An R framework for probabilistic climate analysis

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000295 May 2, 2024 8 / 23

https://doi.org/10.1371/journal.pclm.0000295


computing weights for PPE members based on consistency with historical observations.

Unlike BMA however, Matilda focuses solely on perturbing parameters of a single model

(Hector) to quantify uncertainty and thus does not capture uncertainty associated with model

structure. In this section, we detail the Bayesian weighting scheme performed in Matilda.

We approximate the formalism of Bayesian inference to analyze PPE members and assign

weights according to the probability of ensemble member mi conditional upon observed data

Y. This is described as the posterior probability and, consistent with Bayes’ theorem, is propor-

tional to the product of a chosen likelihood function of mi given observed data and prior infor-

mation of mi (prior probability) [37]. We can express this in equation form as:

PðmijYÞ / LðmijYÞ � PðmiÞ ð3Þ

where P(mi|Y) is the posterior probability of mi conditional upon observed data Y, L(mi|Y) is

the chosen likelihood function, and P(mi) is the prior information of ensemble member mi.

As demonstrated in Eq 3, posterior probabilities are dependent on prior knowledge about

ensemble member mi and a likelihood function that quantifies the agreement between ensem-

ble member mi and observed data Y. Here, we use a normal likelihood distribution function

based on root-mean-square error (RMSE) which is commonly used as a statistical evaluation

of model performance in climate research and is optimal under the assumption that errors are

normally distributed [42,43]. For a given time series of observed data (t) (i.e., scoring criteria)

and a corresponding time series of each ensemble member m(t), RMSE is a quantification of

the averaged difference between the observed and modeled data and is calculated using the fol-

lowing formula:

RMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

YðtÞ � miðtÞ

sYðtÞ

 !2
v
u
u
t ð4Þ

here, RMSEi is an independent RMSE value representing how well PPE member mi agrees

with observations where σY(t) represents the standard deviation of the error associated with the

observations Y at time t and N represents the total number of data points in the time series.

We further use these RMSEi values in our likelihood function. Assuming a normal distribu-

tion, our proportional likelihood can be calculated as:

L mijYð Þ ¼ e�
1
2

RMSEi
sRMSEð Þ

2

ð5Þ

In this equation, a decay relationship exists between RMSEi and (mi|Y), indicating a gradual

decrease in (mi|Y) as RMSEi increases. In other words, the likelihood of an ensemble member

decreases as the disagreement with observations increases. The value of σRMSE in Eq 5 plays a role

in establishing the sensitivity of the likelihood to increased RMSE values, controlling the rate of

likelihood decay. The relationship is explained in detail below and can be visualized in Fig 2.

As described in Sec. 2.4, we enforce an equally distributed prior (mi) across all ensemble

members because although we use prior information about individual parameters of Hector to

build parameter sets, we do not know which sets will result in the most skilled model results

before considering observed data. Taking all this information together, weights are estimated

in score_runs() as normalized probabilities of each ensemble member, taking into account

both agreement with observed data and prior beliefs about ensemble members using the fol-

lowing formula:

oi ¼
LðmijYÞ � PðmiÞ

PN
i¼1
ðLðmijYÞ � PðmiÞÞ

ð6Þ
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where ωi is a weight assigned to each ensemble member.

We provide an example of using score_bayesian() as the scoring function when calling scor-

e_runs(). For this example, we use the result produced in code block 5, and analyze the agree-

ment between ensemble members and observed data with the criterion_co2_obs() scoring

criterion:

8)

Fig 2. Decay rates from varying sensitivity values. Root-mean-square error (RMSE) plotted against likelihood,

conditional upon observed data. Different colors indicate decay rates for different sensitivity values in score_bayesian

(). Setting higher values to sensitivity decreases the deviation penalty applied to ensemble members.

https://doi.org/10.1371/journal.pclm.0000295.g002

scored_hector_runs <- score_runs(results, criterion_co2_obs
(), score_bayesian, sigma = 29.4, sensitivity = 2)

print(scored_hector_runs)

## weights run_number

## 1 0.093578592 1

## 2 0.005328194 2

## 3 0.138975159 3

## 4 0.008768552 4

## 5 0.040364027 5
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The resulting data frame returns 25 weights assigned for each Hector run (indicated by

run_number). Weights for each ensemble member will be nonzero positive values that sum to

1. Weights closer to 1 represent ensemble members in strong agreement with observed data

and weights closer to 0 correspond to members that are not in strong agreement with observed

data. It is important to note that weights are asymptotic and thus no one ensemble member

can score exactly 1 or reach a value of exactly 0 due to the normalization process.

The sigma parameter in code block 8 corresponds to (t) in Eq 7 and provides an option for

the user to provide a time-varying penalty term in the RMSEi calculation. This way, we address

not only observational uncertainties but also changes in those uncertainties over time [44]. For

example, uncertainties for global mean surface temperature data from ~1800s are several times

higher in magnitude compared to temperature observations in more recent years. By provid-

ing an adjustable sigma parameter we account for such cases. By default, the sigma parameter

assumes that the variability of residuals remains constant across all years (homoscedasticity)

and uses the standard deviation of the observed data to penalize errors between Hector’s out-

put and observations uniformly across all years. The user can indicate an alternative (constant)

sigma value (as shown in code block 8). Alternatively, a vector of sigma values can be provided

which will apply a time-varying penalty to the error term in the RMSEi calculation.

The sensitivity parameter in code block 8 is a multiplier applied to σRMSE that sets the decay

rate determining how quickly likelihood values decrease as RMSE values increase. Because

sensitivity represents the unit of acceptable deviation, a lower sensitivity value leads to a faster

decay rate, meaning that the likelihood decreases more rapidly with increasing RMSE values.

Conversely, a higher sensitivity reduces the decay rate, and ensemble member likelihood

decreases more slowly with respect to increasing RMSE values. This results in more weight

being assigned to ensemble members that have a lower likelihood. In Fig 2, we show how set-

ting different sensitivity values in score_bayesian() leads to different decay rates, meaning that

weights are distributed differently depending on the magnitude of the sensitivity parameter. In

effect, this determines how severely an ensemble member is penalized as it departs from a

criterion.

This parameter thus gives users the ability to govern the sensitivity of the likelihood decay

as RMSE values increase. By adjusting the sensitivity value, the user has control over the weight

assigned to different ensemble members based on their RMSE values. Setting a lower sensitiv-

ity value will result in more weight placed on ensemble members with low RMSE values. In

comparison, a higher sensitivity value will give relatively more weight to ensemble members

with higher RMSE values. The default sensitivity value is set to ‘sensitivity = 1‘which quantifies

one-unit standard deviation of the RMSE values, this results in a relatively gradual tapering of

the likelihood as RMSE increases. We also provide the option in score_bayesian() to set a value

to sensitivity directly which will change the acceptable deviation from observed data.

We note that users should adjust sensitivity in line with the context and evaluation purpose

specific to their analytical goals. The case study at the end of this paper provides an example of

assessing ensemble member weights for different acceptable deviation limits and in Sec. 2.8 we

offer a more general discussion of the caveats to model weighting.

2.6.2 Scoring function: Score_ramp(). The score_ramp() function is a simpler and more

transparent scoring algorithm that computes the absolute difference between ensemble mem-

bers mi(t) and observed data Y(t) at each time step:

DðtÞ ¼ jYðtÞ � miðtÞj ð7Þ

Scores are then computed based on how far absolute differences (t) are from arbitrarily

selected minimum (w1) and maximum (w2) divergence values. For example, D(t)� w1
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indicates small differences between modeled and observed data at time t and will result in a

score of 1, whereas D(t)� w2 indicates significant divergence of modeled data from observed

data and will result in a score of 0 (Fig 3). In cases where D(t) falls between w1 and w2, scores

are computed using a linear function that decreases as D(t) values get closer to w2 and further

from w1 (Fig 3).

We can express this linear decay with the following formula:

S tð Þ ¼
ðw2 � DðtÞÞ
ðw2 � w1Þ

ð8Þ

where S(t) is the score at time t. Once computed, scores are averaged across the entire time

series, resulting in a single score for each ensemble member. Scores for ensemble members are

normalized in score_runs() to assign a weight between 1–0 for skilled versus unskilled mem-

bers, where more skilled ensemble members will be weighted closer to 1 while less skilled

ensemble members will receive weights closer to 0. Similar to the normalization step above,

Fig 3. Decay rate for score_ramp(). Example of decay method for score_ramp() where w1 = 5 and w2 = 10. Ensemble

members with an average deviation from observation< 5 will score 1 and ensemble members with an average

deviation> 10 will score 0. Scores of ensemble members with average deviation between w1 and w2 will decrease from

1 linearly as average deviation approaches w2.

https://doi.org/10.1371/journal.pclm.0000295.g003
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weights are estimated using the following formula:

oi ¼
SiðtÞ

PN
i¼1
ðSiðtÞÞ

ð9Þ

where ωi is a weight assigned to each ensemble member from the normalized mean score of

each member Si(t).

Below we provide a code example using score_ramp() as the scoring function in a score_r-

uns() call. As in code block 8, we use the results produced in code block 5 and assess the agree-

ment between ensemble members and observed data with the criterion_co2_obs() scoring

criterion:

9)

Similar to scoring ensemble members with score_bayesian(), the resulting data frame

returns 25 weights assigned to each ensemble member (indicated by run_number).

Ensemble members weighted according to our scoring algorithms can be used to visualize

the uncertainty ranges that different parameter combinations and/or parameter sampling dis-

tributions generate after observational evidence is brought to bear on their results. In Fig 4, we

show all ensemble members weighted using our two scoring algorithms. The ensemble shading

visually demonstrates how score_bayesian(), with a default sigma and sensitivity, distributes

weights more evenly across likely ensemble members, whereas score_ramp() assigns higher

weights to ensemble members falling closer to the minimum divergence range of w1 (when w1

= 0 and w2 = 10 ppm).

A time test on an analysis weighting 1000 ensemble members shows that the difference in

computation time between the two scoring algorithms is negligible, with both functions com-

puting weights for N = 1000 runs in a fraction of a second.

2.7 Defining and calculating metrics and probabilities

Once the ensemble members are scored, we can use them to compute informative metrics

from model projections. Calculating metrics from the final weighted PPE requires (1) a results

data frame and (2) a metric object, which must first be defined by the user.

scores <- score_runs(result, criterion_co2_obs(), score_
ramp, w1 = 0, w2 = 10)

print(scores)

## weights run_number

## 1 1.044760e-02 1

## 2 7.575543e-10 2

## 3 6.271913e-02 3

## 4 8.717546e-21 4

## 5 6.774904e-13 5
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Metric objects determine what data the user is most interested in extracting and summariz-

ing from the results data frame. For example, a metric object can identify information needed

to estimate global mean air temperature anomaly (global_tas) for the 20-year average used by

the IPCC to represent long-term temperature change (2081–2100). We complete this by call-

ing the function new_metric():

10)

This defines a new custom metric object: obtain the mean global air temperature (global_-

tas) for the years 2081–2100. The argument op in code block 10 describes a statistical operation

that can be performed on the model data to compute a descriptive statistic for each member of

the ensemble. While we define a 20-year mean global_tas metric in this example, the user can

also easily compute the median, min, max, standard deviation, etc. for each ensemble member.

Additionally, users can specify a single year rather than quantifying statistics over a range of

years (e.g., 2100 vs. 2081–2100).

Once this metric is defined, we call metric_calc() to compute metric values for each ensem-

ble member using the results data frame:

11)

Fig 4. Weighted ensemble members using different scoring algorithms. Perturbed parameter ensemble (PPE)

projections using 25 parameter sets plotted for atmospheric CO2 concentration from 1960–2100 weighted using the A)

score_ramp() and B) score_bayesian() algorithms. Ensemble member weights are indicated by color shading with the

solid red line representing observed atmospheric CO2 concentrations from 1959–2021.

https://doi.org/10.1371/journal.pclm.0000295.g004

metric_lt <- new_metric(var = "global_tas", years =
2081:2100, op = mean)

print(metric_lt)

## Probabilistic Hector Metric: mean global_tas 2081 to
2100

values_metric_lt <- metric_calc(results, metric_lt)

print(values_metric_lt)
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The resulting data frame returns 25 separate metric values (indicated by the metric_result

column) representing the 2081–2100 mean warming of global air temperature.

When metrics of interest are calculated and weights are assigned to PPE members based on

agreement with historical record, we have the necessary information to address questions such

as, “What is the probability that long-term mean warming will be between 2.0–4.0°C relative to
pre-industrial reference?”

We approach such a question by calling prob_calc(), a function that sums PPE weights as

they are binned into metric ranges identified by the user. Running prob_calc() requires (1) a

data frame where metric values can be identified, (2) bins defined by the user, and (3) a data

frame where PPE weights can be identified. Here, we provide an example of prob_calc() usage:

12)

In this example we use PPE weights computed using the score_bayesian() algorithm. The

prob_calc() result shows the total probability that long-term projections of mean warming will

fall within each of the temperature ranges defined by our bins (1.5–2˚C, 2–2.5˚C, 2.5–3˚C,

## run_number metric_result

## 1 1 2.315857

## 2 2 3.083498

## 3 3 2.232456

## 4 4 2.474680

## 5 5 1.975036

# Establishing metric ranges

temp_range <- c(1.5, 2.0, 2.5, 3.0, 3.5, 4.0, Inf)

# Producing probabilities

prob_calc(metrics = values_metric_lt$metric_result,

bins = temp_range,

scores = scored_hector_runs$weights)

bins scores probability

## 1 (1.5,2] 0.04765274 0.04765274

## 2 (2,2.5] 0.18914194 0.18914194

## 3 (2.5,3] 0.40841067 0.40841067

## 4 (3,3.5] 0.26876412 0.26876412

## 5 (3.5,4] 0.05342877 0.05342877

## 6 (4,Inf] 0.03260175 0.03260175
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3–3.5˚C, 3.5–4˚C, and>4˚C) for the SSP scenario represented in our core object (SSP 2–4.5).

With the result above, for example, we can conclude that there is a ~90% probability that the

long-term average global warming will be between 2.0–4.0˚C relative to pre-industrial

reference.

2.8 Caveats to model weighting for probabilistic analysis

While we chose to provide the user with the flexibility to tailor our model weighting frame-

work to fit the specifics of individual analyses, we encourage users to exercise caution and con-

sider some caveats when using Matilda for probabilistic analyses. First, we provide several

methods for weighting PPE members with different scoring criteria. It is important to note

that decisions regarding the choice of scoring algorithm and criteria can be open-ended, and

different approaches will yield different results. For example, likelihood weights computed

using observed temperature alone will differ from those computed with observed CO2 alone

and weights computed using multiple lines of evidence (can be completed in Matilda using

multi_criteria_weighting()) will potentially differ from those using either temperature or CO2

individually. One approach to ensure credible results may include a sensitivity test of different

weighting procedures. For example, we conducted a test in which we weighted a 1000-member

ensemble using multiple lines of evidence (historical temperature and CO2 concentration). In

this test we show that altering the influence (weight) of the scoring criterion does not signifi-

cantly change resulting warming probabilities. This would provide evidence that our results

are not highly sensitive to changes in the influence of the scoring criterion (S1 Fig). Addition-

ally, Pressburger et al. [13] provide an example of using multiple lines of evidence to apply fil-

ters to a PPE in an informative way.

Despite the similarities between the two scoring algorithms, the differences in approach

and customization options can lead to variations in the behavior and performance of each

method (Fig 4). It is therefore important to consider the specific goals of an analysis and char-

acteristics of the data when selecting which scoring algorithm to use. The benefits of ramp

scoring (score_ramp) is its simplicity, making it particularly useful for educational purposes or

in preliminary analyses. As Pressburger et al. [13] show, this weighting method can be useful

for methodologies aiming to cull ensemble members that fall outside of hard bounds. Bayesian

scoring (score_bayesian) is a more complex approach that is conceptually closer to formal

Bayesian calibration methods like BMA. The approximation of Bayesian methods allows for a

more rigorous approach to model weighting. Unlike our ramp scoring approach, score_baye-

sian() has the ability to incorporate time-varying error, making it useful in cases where the

uncertainty of observed data (scoring criterion) is expected to vary temporally.

Finally, it is important to note that score_bayesian() assumes independence of model-

observation residuals. We acknowledge this assumption does not always hold true. Therefore,

while our framework provides valuable results, there are limitations by not addressing more

complex error structures, such as autocorrelation of residuals [44]. In such cases, more sophis-

ticated modeling techniques may be necessary to improve accuracy of inferences from results

[29,44].

3 Case study: Probabilistic temperature projections across four

SSP scenarios

Here, we present a case study to demonstrate the core utility of Matilda. We note that this case

study is meant only to show the utility of the package and is simply illustrative. It is not meant

to be presented as a formal Bayesian probabilistic analysis of temperature change from SSP

scenarios. In this case study we will use Hector with four SSP scenarios from CMIP6 (SSP1-
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1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0) [5] to compute mean temperature change over the long-

term 20-year average presented in IPCC AR6 [45]. We interpret our results similar to the

IPCC, using scaled likelihoods: very likely (90–100%), likely (66–100%), about as likely as not

(33–66%), unlikely (0–33%), and very unlikely (0–10%) [45]. This case study examines the

probabilities of long-term (2081–2100) global mean surface temperature change relative to a

pre-industrial reference (1850–1900) in each of the four SSP scenarios.

After initiating cores for each of the four scenarios, we generate 1000 parameter sets using

generate_params(). For consistency, these 1000 parameter sets remain the same for each sce-

nario. We call iterate_model() to run Hector across all scenario cores using parameter sets to

propagate parameter uncertainty to PPE members. When running the model iterations, we

extract the global mean surface temperature (gmst) for the years 1960–2100. Running the

model with 1000 parameter sets across four SSP scenarios takes ~100 minutes to run serially

on a single processor. Our resulting ensemble members are weighted by calling score_runs().

We weighted ensemble members using observed mean annual global surface temperature as a

scoring criterion (criterion_gmst_obs()) with the Bayesian scoring algorithm (score_bayesian).

We assume the uncertainty of the observed data to be homoscedastic and therefore use the

default sigma value.

Assessing different sensitivity values informs the acceptable RMSE ranges for ensemble

members and weights them accordingly. For example, we show how weighting ensemble

members using score_bayesian() with a sensitivity = 1 (default sensitivity) places a higher like-

lihood on ensemble members with lower RMSE values, while manually overriding the sensitiv-

ity to sensitivity = 2 decreases the penalty of ensemble members with relatively higher RMSE

values (Fig 5).

In this example analysis, we maintain sensitivity at its default value and then visualize PPE

members for each SSP scenario analyzed (Fig 6A). This data represents global mean surface

temperature normalized to the reference period of 1850–1900 (pre-industrial as previously

stated). Normalization of the output data is completed as a post-processing step. The data

shown provide some evidence of the range of possible global mean surface temperature futures

under each scenario. The most likely outcomes are those that most accurately reflect historical

global mean surface temperature patterns (Fig 6A). To summarize the modeled data using our

metric of interest (20-year mean of global surface temperature for the years 2081–2100), we

first establish our metric definition using new_metric() and then call metric_calc() to compute

metrics from our evaluated PPE. For each SSP scenario, we˚compute probabilistic projections

of long-term mean warming using prob_calc() for 0.5˚C temperature bins for each SSP sce-

nario (Fig 6B).

From this example, we can infer that when averaged over 2081–2100, the probability of

remaining below 2.0˚C warming decreases steadily as we transition from the low emissions

scenario (SSP1-1.9) to the higher emissions scenario (SSP3-7.0) (Fig 6B). We can compute

approximate probabilities for different temperature ranges for the SSP scenarios by computing

the weighted sum of probabilities in desired ranges. For example, in the low emission scenario

SSP1-1.9, the probability that warming will remain below 2.0˚C in our long-term warming

projection is ~96%. Alternatively, we can calculate precise probabilities by altering bin widths

supplied to prob_calc() to ranges that can be compared with IPCC results [45]. For example,

in IPCC AR6 the SSP1-1.9 scenario is very likely (90–100%) to be warmer by 1.0˚C-1.8˚C rela-

tive to pre-industrial reference, while the SSP3-7.0 scenario is very likely to be warmer by

2.8˚C-4.6˚C [45]. We find similar results here, where SSP1-1.9 is very likely (97%) to be

warmer by 1.0˚C-2.0˚C and SSP3-7.0 is very likely (92%) to be warmer by 2.4˚C-4.8˚C relative

to the pre-industrial reference. For scenarios SSP1-2.6 and SSP2-4.5, the corresponding very
likely ranges in IPCC AR6 are 1.3–2.4˚C and 2.1–3.5˚C, respectively [45]. For these scenarios,
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we again find very likely temperature ranges similar to what IPCC AR6 indicates, where SSP1-

2.6 is very likely (94%) to be warmer by 1.1˚C-2.6˚C and SSP2-4.5 is very likely (92%) to be

warmer by 1.7˚C-3.8˚C relative to the pre-industrial reference.

The results from this example case study assume that models can be accurately evaluated

using a single scoring criterion of historical data (such as observed global mean surface tem-

perature). However, it is widely recognized that evaluating climate models often involves con-

sidering multiple lines of evidence. For example, comprehensive model evaluation should

involve assessing performance across various observed climate variables (e.g., temperature,

CO2 concentrations, ocean heat content, etc. and the interactions that exist among those vari-

ables), as well as more complex models (i.e., ESMs). The form of the scoring function is also

non-univocal in most applications and motivates the flexibility of Matilda in allowing different

choices.

4 Conclusion

Using RCMs for probabilistic climate projections is critical for exploring uncertainty in the

future integrated human-Earth system [13,17–19]. The use of RCMs presents a viable

Fig 5. Likelihood of ensemble members given different sensitivity values. Likelihood of perturbed parameter

ensemble (PPE) members for an example emissions scenario based on root mean square error (RMSE) using the

score_bayesian() algorithm. Blue line shows the use of default sensitivity value: The algorithm penalizes ensemble

members as RMSE values deviate from one unit of standard deviation. Red line shows the use of a customized

sensitivity value: Setting sensitivity = 2 indicating two units of standard deviation and thus assigns weight to ensemble

members falling within this acceptable deviation range. Black dots represent individual ensemble members.

https://doi.org/10.1371/journal.pclm.0000295.g005
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approach to tackle this challenge, as they possess the capability to simulate perturbed parame-

ter ensembles (PPEs) rapidly and can emulate the behavior of more complex ESMs [17] for

some key large-scale observable quantities. However, despite their proficiency, some chal-

lenges arise when employing several RCMs for probabilistic climate projection analysis. These

challenges include closed-source designs and placing heavy programming responsibility on

the user [7,10,14,21], which can make both analysis and interpretation difficult.

Matilda is an open-source, turn-key, flexible framework that provides tools to complete

probabilistic climate projections using the Hector model. We show how this tool streamlines

probabilistic projection analysis and makes such analytical approaches more accessible to the

large community of R users, with seamless integration with Hector. By expanding the ways

Hector can be used, Matilda can help address questions of climate uncertainty under different

emissions scenarios and pursue other probabilistic analyses. We hope that Matilda can be

Fig 6. Global mean surface temperature projections and warming probabilities across four emissions scenarios.

A) 1000-member perturbed parameter ensemble (PPE) projecting global mean surface temperature from 1950–2100

for each SSP scenario. Darker blue ensemble members represent those members that best reflect historical temperature

observations. B) Stacked bars blocked by the probability of different temperature ranges for each SSP scenario. Lower

emissions scenarios (SSP1-1.9 and SSP1-2.6) have a higher probability of temperature remaining below 2.0˚C than

higher emissions scenarios (SSP2-4.5 and SSP3-7.0).

https://doi.org/10.1371/journal.pclm.0000295.g006
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particularly valuable when coupled with GCAM and similar models to understand the propa-

gation of uncertainty in the human-Earth system [6,19,20,46].

We aim to continue the development of Matilda in several ways. First, we aim to develop

enhanced parameter sampling options to enable more robust sampling without relying heavily

on a priori assumptions about the parametric form of prior distributions. Improving this pro-

cess can be addressed by implementing more Bayesian approaches into parameter sampling

(e.g., Markov Chain Monte Carlo sampling) [47]. While Matilda provides a practical method

for approximating posterior distributions without explicitly performing MCMC sampling on

each parameter, future versions of the package can be designed to automate this process.

Implementing this approach will formalize the Bayesian updating process and make it possible

to efficiently explore higher dimensional parameter spaces. Second, providing more methods

for model evaluation will improve the robustness of an analysis. While our case study assumes

that models can be accurately evaluated using a single scoring criterion like observed global

mean surface temperature, it is widely recognized that climate model evaluation is often

improved by considering multiple lines of evidence. Comprehensive model evaluation should

involve assessing performance across various observed climate variables (e.g., temperature,

CO2 concentrations, ocean heat content, and the interactions among those variables) and/or

existing ESMs. Finally, we intend to develop further Matilda’s ability to be integrated with

additional RCMs. This integration would provide a unified approach for conducting probabi-

listic projection analysis across different models. By doing so, we can effectively address ques-

tions that focus on clarifying uncertainties arising from structural differences among models

within the RCM community.

Supporting information

S1 Fig. Sensitivity test using different scoring criterion weights of influence. Warming

probabilities for a 1000-member perturbed parameter ensemble weighted using multiple lines

of evidence. Lines of evidence were given different influence (weight) in the model weighting

scheme to test sensitivity of different weighting procedures. Titles on each panel indicate the

influence of each line of evidence. Stacked bars are blocked by the probability of different tem-

perature ranges for each SSP scenario.
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